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SUMMARY

There are three methods that can be used to estimate population size when survey data are
collected just before and just after two or more known harvests: change-in-ratio, index-removal,
and catch-effort (removal) methods. In this paper, we introduce a methodology that combines all
three methods. We begin by modeling the survey and removal processes as a Poisson point process
and a linear death process, respectively, and then we combine the two processes. The complete-
data likelihood can be factored into three parts: the general likelihood function of the index-removal
method, the general likelihood function of the change-in-ratio method, and the general likelihood
function of the catch-effort method. We compute the maximum likelihood estimates using the
Powell search algorithm. Monte Carlo simulations are used to demonstrate that the estimates
from combining change-in-ratio, index-removal, and catch-effort methods are more precise than
the estimates based on combining any two of them or only using a single method. An example
based on snow crab data is presented to illustrate the methodology.

1. Introduction

Removal or harvest data constitute an important type of information about populations. Many
techniques have been developed for the analysis of such data. In this paper, we focus on change-
in-ratio, index-removal, and removal (catch-effort) methods for the estimation of initial population
size. The population is assumed closed (i.e., constant) except for the removals.

The change-in-ratio (CIR) method was developed by Kelker (1940) in an intuitive manner to
estimate the size of a harvested deer population. The population size was estimated from the
knowledge of sex ratios before and after a differential kill by hunting. Chapman (1954, 1955)
introduced the first stochastic model for a closed population with two subclasses and one removal.
The method requires the assumptions that (1) the population is closed except for the removals,
which are known exactly or can be estimated, and (2) all animals have the same probability of
being captured in a survey. His model has been generalized to more than two subclasses (Otis,
1980; Udevitz and Pollock, 1991, 1995) and more than one removal (Chapman, 1955; Pollock et al.,
1985; Udevitz and Pollock, 1991, 1995). Most of these models assume all animals have the same
probability of being caught in each survey (Kelker, 1940; Chapman, 1955; Otis, 1980). Chapman
and Murphy (1965) presented a two subclasses model that allows different sampling probabilities
for each subclass but assumes the sampling probabilities remain constant over time. Pollock et al.
(1985) provided a generalization in which the ratio of subclass sampling probabilities is constant
over time. Udevitz and Pollock (1991) developed a general approach that incorporates all the
previous CIR models.
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The index-removal (IR) method makes use of the decline in a measure of relative abundance due
to a known removal. The relative abundance is measured in surveys before and after the removal.
The estimator was first given by Petrides (1949). The method requires the assumptions that (1) the
population is closed except for the removals, which are known exactly or can be estimated, and (2)
all animals have the same probability of being captured in a survey and the capture probability is
constant over time. Eberhardt (1982) showed that, if the survey sample counts are assumed to follow
a Poisson distribution, then the IR estimator is also the maximum likelihood estimator. Routledge
(1989) generalized the simple case (two surveys, one removal) to multisurveys with multiremovals.

If animals are sequentially removed from a closed population, we would expect to see a decline
in the number caught per unit effort and the population size can be estimated from the observed
decline. That is the basis from which removal or catch-effort methods were developed. This tech-
nique is now widely used in the study of fish populations. There are two main approaches for the
estimation of population size from catch-effort data: least squares regression (Leslie and Davis,
1939; DeLury, 1947; Ricker, 1958) and maximum likelihood estimation (Seber, 1982; Gould, 1994).
Bishir and Lancia (1996) state that weighted least squares regression estimators are just as precise
as MLEs. The assumptions made for the catch-effort models are (1) the population is closed except
for the removals, (2) removal is a Poisson process with regard to effort and the catchability coef-
ficient is assumed constant over time, (3) all animals have the same probability of being removed
in each removal, (4) the units of effort are independent, and (5) the removals from the population
are known. When the effort expended in each removal is constant, the catch-effort method is often
termed the removal method. However, this distinction is not universally accepted and we use the
terms interchangeably. In the special cases of two and three removals, the MLE of initial population
size has explicit form (Seber, 1982). For the general case, Moran (1951) and Zippin (1956, 1958)
derived an iterative procedure for finding the maximum likelihood estimates of initial population
size and capture probability.

Since the CIR, IR, and removal estimators all provide information on the population size, it is
possible to design a study that combines these methods. Dawe, Hoenig, and Xu (1993) combined
the CIR and IR estimates by computing a weighted mean. Routledge (1989) considered a series
of indices of abundance alternating with a series of removals. He combined the removal and IR
methods using a likelihood approach. However, no work has been done on combining CIR, IR, and
removal methods. In this paper, we present a general approach to combining all three methods
to get a better estimator of population size that utilizes all the data collected in a study. A more
detailed version of the paper is found in Chen (1995).

2. Basic Structure of Data

The survey and removal processes are the two basic elements involved in the study. Here we consider
a general case for a population that can be partitioned into r subclasses (r > 1) and s sampling
periods (s > 1). A sampling period generally consists of a survey sample of the population followed
by a removal. However, we show in Section 5 that some sampling periods can have a sequence
of removals. The subclasses can be defined on factors such as sex, age, size, or marking of the
individuals. Hunting regulations and hunter preferences often result in selective removals from
wildlife populations, and fishing gear selectivity often causes a differential harvest of size classes for
fish populations. Marking animals is another possible way of causing selective removals. In general,
the harvest data are the typical data collected by the removal process and the method used for
survey sampling is usually not related to the method used in the removal process. For example,
a deer population might be surveyed by roadside counts, while the removal data are collected by
regulated hunting. A fish population might be surveyed by research counts and the removal data
collected by a commercial fishery. ,

Initially, f1 units of sampling effort (e.g., net hours) are expended in the first survey, and a total
of n; animals are counted with z11,221,...,Z,1 animals being seen in each subclass, respectively.
The first survey is followed by a harvest with Rj1, Ro1,..., Ry removals in each subclass, and
a total f{ units of effort are expended in the first harvest. The survey-removal procedures are
repeated until all s surveys and s — 1 removals are completed. The procedure can be illustrated in
tabular form as
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3. General Sampling Model

We present the general probability models for survey and removal processes first, then introduce
an idea to combine these two processes.

3.1 General Probability Model for the Survey Process

When sampling is with replacement and the sampling efforts are known, Udevitz and Pollock (1995)
modeled the survey sampling process as a Poisson point process where each animal is counted
at random with respect to increments of sampling effort and it is assumed that the encounter
probabilities for each individual are independent. Under these assumptions, it can be shown that

(:rij | f]) mdepreindent Poisson('yijijij) = 1, ceey T j = 1, ., 8

Xij = Xi1 — 2] Rzk, where the Ry, are known fixed quantities. X;; is the number of type i
animals in the populatlon at time j. The v;; is the intensity function of the Poisson point process
and it also can be interpreted as the probability of being captured by one unit of effort in the
research survey. The intensity functions are assumed to be the same for all individuals of a given
subclass during a given sampling period, but they may depend on subclass and sampling period.
The likelihood is given by

P(zlj,zzj,...zrj,j:1,...,s|fj,j=1,...,s)

= [[I]Pr:; | £3)

j=li=1
= H H (’Yljf] ”)x” e—(’YanJ u) (3'1)

j=li=1
Under the model, the initial subclass sizes (X;1, i = 1,2,...,r) and intensity functions (v;;, 7 =
1,...,m,7 = 1,...,s) are parameters of interest. There is a total of rs + r unknown parameters,
which exceeds the number of minimum sufficient statistics (z;5, ¢ = 1,2,...,77 = 1,2,...,s).

Thus, the parameters are not identifiable. In order to obtain identifiable parameters, we must
impose at least r constraints on the -;;. Udevitz and Pollock (1991, 1995) imposed a constant
probability ratio assumption to the ~v;;, i = 1,...,r,5 = 1,...,s, that is, v;; = pX;F;, where );
represents the ratio of the sampling probability for subclass i to that for subclass 1 at any given
time; B3; represents the ratio of the sampling probability at time j to that at time 1 for any subclass
{with Ay = 1 = 1). Applying the constant probability ratio assumption to the hkellhood (38.1),
the likelihood becomes

TTT 2 Gony sy bbs @2

j=l:i=1

3.1.1 General probability model for the index removal method. The total number of encounters
(nj = Ei_ x;;) is the sum of the independent Poisson random variables (z;;,7 = 1,2,...,7). This
implies n; is a Poisson random variable also. Thus,

(n; | f5) independent p isson (,uf],B] Z). XZJ> i=1,...,s,

=1
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where X;; = X;; — ch;l R;i. The likelihood for the total sample counts is

8

T nj
1 _ foyT X
L= H (n_J' (Nﬁjfj § :AiXij> e~ (B3 f3 T, MXIJ)) . (3.3)
=1

j=1

If we assume all animals have the same probability of being caught by one unit of sampling
effort regardless of class and survey (i.e., assume 7;; = p for ¢ = 1,2,...,r,and j = 1,2,...,s),
then L; ends up as the likelihood of the index removal method. If the capture probabilities for
the subclasses are not all the same, the total population (¥; X;1) is not estimable in Lj, but the
problem of heterogeneity of capture probability can be solved by making separate estimates for
each subclass provided that the sampling probabilities within each subclass are homogeneous.

3.1.2 General probability model for the change-in-ratio method. Udevitz and Pollock (1991)
developed a general probability model that incorporates all of the previous CIR models for
estimating the size of each subclass in a population. This generalization can be viewed as part
of the likelihood of (3.2). The likelihood of (3.2} can be factored as

P(mlj,m2j7"'am7‘j7j=1$""s|fj7j:1v"'7s)
=Pr(zlj)m2j7"'am'r‘—l,janjaj: 1,...,s | f_77]= 1""’3)

s
=[] Pr@iss- s 2r—1,5 I 5, £5)Pr(ns | £5),
j=1

where

independent . . A1 X1 Ar—1Xpo1,4

(15, %245+ ooy EBro1 5 | 7gy f5) meers multinomial (nj, = ey =T :
2imi Mo 2o XX
T
ind dent . .
(nj | £;) EePSIAe Poisson (ufjﬁj ZA{X@) , i=1,...,s
=1

If factored in this way, II7_; Pr(z1j,...,2r—1,j | ny, f;) is the likelihood of Udevitz’s general model,

and IT7_; Pr(n; | f;) is the likelihood of the IR method as shown in Section 3.1. Thus, the likelihood
for the CIR method is

8

n;! r XX\
Lo = J ( Cabal ) . (3.4
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3.2 General Probability Model for the Removal Process (and Method)

We now propose a general probability model for the removal process. The model described in
Section 3.1 assumes that the sampling is with replacement, and therefore it is reasonable to assume
a Poisson process for the survey process. However, when animals are permanently removed from
a finite population, the removal rates, which are related to the intensity functions of the Poisson
process, are not a constant but related to the population size. If we assume the removal rates are
linearly proportional to the population size, then the removal system can be modeled as a pure
linear death process (Bhat, 1972). The assumptions of the linear death process are

(1) Pr(X;5(w 4+ Aw) = z — 1| Xi5(w) = 2) = oni; Aw + o Aw)

(2) Pr(X;5(w+ Aw) = z — z | Xij(w) = z) = o(Aw), 2> 1,
where X;;{w) is the number of subclass ¢ animals in the population at time j after expending w
units of effort in the removal process. Note X;;(0) = X;; and 7;; is the individual death rate, which

is assumed to be the same for all individuals of a given subclass during a given removal period. In
fisheries work, n;; is referred to as the catchability coefficient. Under these assumptions, we have

(Rij | f;) ~ binomial (Xij, 1— e_"lijf;) )

If we impose the constant probability ratio assumption on the individual death rate as ;; = vp;7;,
then the full likelihood function for the removal process is

L3=Pr(R1j,...,}L~j,j=1,2,...,8—1|f;,j=1,2,...,s—1)
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In the case of r = 1, L3 is the same likelihood function as the catch-effort method discussed by

Seber (1982).

3.3 Integration of the Removal and the Survey Sampling Processes

The models described in Sections 3.1 and 3.2 treat removals as fixed quantities rather than random
variables. If we model both sampling counts (z;;) and removals (R;;) as random variables, then
the likelihood function of z;; and R;; can be factored into three parts, that is,

L =Pr(z1j,...,&rj,j=1,...,8R1j,.. ., Rrj,d=1,...,8s = 1| fj,5=1,...,8
ffi=1,...,s-1)

g s
= HPr(nj | Rij,..., Rrjs £5, Xi1) HPr(mljauwar—lj | nj, Rij, ..., Rrj; X41)
j=1 j=1

s—1
X H Pr(le,.. . ,Rrj I f;,le)
i=1

= L) X Ly x L3,

whereL1 is the general likelihood of the index-removal model, Ly is the general change-in-ratio
likelihood, and L3 is the general likelihood function of catch-effort or removal models. This approach
should lead to large gains in efficiency because of more complete use of the data collected.

3.4 Numerical Methods

We apply the Powell (1964) search algorithm, which is a method to locate the minimum of a function
of several variables, to find the minimum of the negative of the log (likelihood function). In order
to ensure that the global maximum is found, the use of several starting values is sometimes helpful.
If the likelihood function is from the exponential family of distributions, the maximum likelihood
problem can be reformulated as a weighted least squares problem as done by Udevitz and Pollock
(1991). The MLEs can then be calculated using PROC NLIN (SAS, 1985). We have checked that
the Powell method gives the same estimates as those calculated from PROC NLIN. Since the
MLE is asymptotically efficient, the variance of the MLE can be approximated by inverting the
information matrix (Casella and Berger, 1990).

4. Simulation Study

Monte Carlo simulation was used to investigate the performance of the index-removal, change-in-
ratio, and removal methods and the gains of the combined methods. Here we considered two levels
of population size in the simulation study. The first one is a case with small population size, and
we assume the removal rate is proportional to the population size. The small population case may
be more realistic for wildlife populations but not for fishery studies. Thus, we also considered a
large population case. The simulation data were generated from the probability models described
above under the following conditions.

Case 1: Small Population

(1) Population size N1 = 2000, with X1; = 1000 and X7 = 1000 (r = 2).

(2) Number of survey samples = 3, number of removal samples = 2.

B)M=x=10;p=p=0F=10

4) 1 =m =1.0.

(5) 1 = 0.001, with effort chosen so that 0.1 of the population is expected to be seen in each
survey.

(6) v = 0.0001, with effort chosen so that 0.1 or 0.3 of type-1 animals are removed in each
removal (p1 = 1).

(7) p2 is chosen so that, in each removal, the proportion of type-2 animals removed is 0.2, 0.4,
0.6, 0.8,

(8) f and f* were set equal to 1.

Case 2: Large Population
(1) Population size N1 = 6,700,000, with X711 = 3,500,000 and X321 = 3,200,000.
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(2) Number of survey samples = 3, number of removal samples = 2.

(3) A1 =22 =1.0; 81 = B2 = B3 = 1.0.

(4) m =7 =1.0.

(5) p = 0.00002, with effort chosen so that 0.01 of the population is seen in each survey.

(6) » = 0.0001, with effort chosen so that 0.01 or 0.03 of type-1 animals are removed in each
removal (p1 = 1).

(7) p2 is chosen so that the proportion of the type-2 animals removed is 0.02, 0.04, 0.06, 0.08.

(8) f and f* were set equal to 1.

The simulation data were generated according to
(nl) ~ POisSOn( (Xll + X21))
(n2) ~ Poisson(u(X11 + X21 — R11 — Ra1))
(

(n3) Poisson(u(X11 + Xo1 — R11 — Ro1 — Rig2 — R22))

X11
z11) ~ binomial (n , ) o1 =N1 — X
(z11) Y X 4 Xor 21 = N1 — £11
X111 — R
z12) ~ binomial (nz, ) ; T22 =N —I12
( X11+X21 — R11 — Ry 2
(z13) ~ binomial (ng, X11 — Ru — Riz ) ; T3 = N3 — T13
X11+ X21 — R11 — R21 — R12 — Ra2

(R11) ~ binomial(X11,1 —e™ ")

(R21) ~ binomial(X21,1 —e™ ¥*?)

(R12) ~ binomial(X;; — R11,1—¢ ")
(Ra22) ~ binomial(X2; — Ra22,1 — e 72

We model the sampling and removal processes using the stochastic models described in Section
3 and assume v;; = pfori = 1,2 and j = 1,2; n1; = v, and n2; = vps for j = 1,2,...,s. Then the
identifiable parameters corresponding to each likelihood function are as given in Table 1. We set
a lower bound for the estimate of the population size as the total removal + 1 but set no upper
bound in the Powell search algorithm. Plots of the likelihood functions indicate that the likelihood
functions were unimodal in a broad region around the maximum. In the case where there is no
strong selective removal, the Powell method may converge locally. In our estimation procedure
for the simulations, we use the true parameter values as the initial values when searching for the
MLEs. When analyzing actual data, it is advisable to try a number of initial values, including those
obtained from analytical solutions for simple models such as the traditional CIR, IR, and removal
estimators.

When 10% of type-1 animals and 20% of the type-2 animals are removed from a small population,
the frequency distributions of N; are skewed and have long right tails (see Chen, 1995). As the
removal rate for type-2 animals increases, the overestimates tend to occur less often and the
distributions are less skewed, except for the histograms of the removal estimates. For the large
population case, the distribution patterns of N are similar to those found in the small population
case. The standard errors as measured in the simulations are quite sensitive to extreme values
and are therefore particularly unstable under the conditions where extreme values of the estimates
are most likely. For example, we simulated 1000 data sets by Monte Carlo methods twice in the

Table 1
Identifiable parameters associated with the various likelihood
functions for the simulation study. For the index-removal
method, the population total only is estimated.

Likelihood Parameters
All X1 X b v P2
IR X11 + Xo1 7
CIR X111 Xo
R X1 X2 v P2
IR/CIR X1 1 X21 w
IR/R X111 Xa o v P2

CIR/R X117 Xo1 v 02
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case where 10% of the type-1 animals and 20% of the type-2 animals are removed; the means and
standard errors (in parentheses) of the MLE of the total population size for combining all three
methods are 2152.72 (1053.13) and 2130 (750.24) for the two runs. Consequently, the mean and
variance are unreliable indicators of the accuracy of the estimate. We chose the median and the
proportions of the estimates within specified ranges of the true values to measure the location and
the spread of the distribution.

The medians of the distributions based on the 1000 Monte Carlo simulations for the small and
large population cases are given in Tables 2 and 3, respectively. In the simulation of the large
population case, the medians are reasonably close to the true values. However, in the case of the
small population, the medians were less than the true values when 10% of type-1 and 20% of type-2
animals are removed, except for the medians of the total population size of the removal estimates
and the estimates of combining the IR and the removal methods, but they approached the true
values as the removals increased. The percentage of estimates within a given distance of the true
value are given in Tables 4 and 5. In both cases, the estimates from combining all three methods
are uniformly more precise than the others. Comparing the fourth, fifth, and sixth columns to the
seventh, eighth, and ninth columns of Tables 4 and 5, we also see the gains from combining any
two of the CIR, IR, and removal methods compared to the use of a single method.

Theoretically, we expect that increasing the sampling proportion in the survey process improves
the precision of the estimators, except for the removal estimate (which does not use the survey data).
Therefore, we fixed the sampling proportion but selected a range of removal rates to investigate
its influence on the properties of the estimator. First, we compared the estimates of the total
population size for CIR, IR, and removal methods (Tables 4 and 5). Comparing the fourth and
sixth columns, we found that both IR and removal estimates increase their efficiencies as the
proportions of removals increase, and the IR method performs better than the removal method all

Table 2
Comparison of medians of the estimates obtained under indez-removal, change-in-ratio, removal,
and combined methods for the case of a small population (N7 = 2000, X1; = 1000, X1 = 1000)

Ryj/X1j Roj /X2 All IR CIR R IR/CIR IR/R CIR/R
Median of Ny
0.1 0.2 1958 1963 1956 2061 1995 2011 1915
0.4 1982 1990 1965 1827 1979 1977 1976
0.6 1998 2009 2016 1844 2007 2003 1999
0.8 1997 2012 2001 1906 2005 2002 1990
0.3 04 1987 2003 2016 1990 2002 1993 1972
0.6 1993 1999 1994 1981 1994 1992 1992
0.8 1996 1990 2016 1990 2003 1990 2001
Median of X1
0.1 0.2 977 — 995 774 995 910 946
0.4 992 — 977 780 992 976 979
0.6 998 — 1011 839 1006 1005 998
0.8 997 — 999 908 1006 1003 990
0.3 0.4 989 — 1025 987 1002 995 986
0.6 994 — 1002 977 995 986 994
0.8 994 — 1016 995 1001 993 999
Median of X 21
0.1 0.2 978 — 971 964 995 974 963
0.4 991 — 980 991 990 991 988
0.6 998 — 1001 997 1002 997 999
0.8 1001 — 1000 1000 999 1000 1000
0.3 0.4 995 — 994 994 1001 995 993
0.6 999 — 999 1000 1000 1001 999

0:8 1001 — 999 1001 999 1001 1000




822 ' Biometrics, September 1998

‘ Table 3 ,
Comparison of medians (x10°) of the estimates obtained under index-removal,
change-in-ratio, removal, and combined methods for the case of a large
population (N1 = 6.7 x 10°%, X1; = 3.5 x 10%, X2; = 3.2 x 10%)

Ryj/X1; Ry; /X All IR CIR R IR/CIR  IR/R CIR/R

: Median of Ny
0.01 0.02 6.697 6.685 6.710 7.133 6.697 6.793 6.701
0.04 6.700 6.681 6.724 . 6.694 6.697 6.652 6.687
0.06 6.703 6.711 6.681 6.685 6.696 6.687 6.710
0.08 6.696 6.700 6.685 6.706 6.704 6.711 6.687
0.03 0.04 6.704 6.704 6.692 6.741  6.701 6.720 6.707
0.06 6.603 6.674 6.710 6.697 6.679 6.675 6.696
0.08 6.701 - 6.706 6.712 6.705 6.703 6.718 - 6.708

Median of X1 '

0.01 - 0.02 3.500 — 3.510 3.648 3.499 3.550 3.501
: C 0.04 3.501 — - 3.518 3.493 . 3.496 3.467 3.494
0.06 3.500 — 3.490 3.488 3.497 3.498 3.504
0.08 3.498 — 3.490 3.502 3.503 3.504 3.492
0.03 0.04 3.503 — . 3.492 3.503 3.502 3.483 3.505
0.06 - 3.496 — 3.510 3.474 3.488 3.474 3.499
0.08 3.502 — 3.505 3.501 3.501 3.501 3.504

Median of X2;
0.01 0.02 3.196 — 3.200 3.200 3.196 3.199 3.199
0.04 3.198 — 3.200 3.197 3.197 3.188 3.194
0.06 3.199 — 3.200 3.204 3.200 3.205 3.203
0.08 3.196 — 3.191 3.196 3.199 3.194 3.195
0.03 0.04 3.200 — 3.200 = 3.214 3.201 3.195 3.204
0.06 3.196 — 3.200 3.200 3.189 3.197 3.199
0.08 3.204 — 3.200 3.207 3.201 3.206 3.205

the time. This is because it is not the rate of removal but rather the change in population
composition (due to a differential harvest) that determines the precision. This result is consistent
with the work of Paulik and Robson (1969). The pattern of performance of the CIR, IR, and removal
estimators for the small population case is also revealed in the large population case (Table 5). The
only case where the CIR method performs better than the IR method in the estimation of total
population size is when 10% of type-1 and 80% of type-2 animals are removed from the small
population. After examinirig the simulation results, we conclude that, if there is a strong selective
removal resulting in a big change in subclass proportions before and after the removals, the CIR
meéthod often: performs better than the IR and removal methods. Otherwise, we can get the most
precise estimator of the total population size from the IR method.

5. Extension and Example

Sometimes it is impractical to obtain a midseason survey sample, perhaps due to a substantial
increase in costs, but it is possible to collect survey samples before and after the fishery and to
monitor a series of removals between the surveys. The following example, using a study of snow
crabs in St. Mary’s Bay, Newfoundland, Canada (Chen et al., 1998), shows how the combined
method can be generalized in this way. Research sampling surveys were conducted before and after
the snow crab fishery. Fifty-five fleets of traps were set at randomly selected locations in the first
and the second surveys. At each location, two large-meshed and two small-meshed traps were set
for 24 hours during each sampling period. Only male snow crabs with carapace width greater than
or equal to 95 mm are harvested in Atlantic Canada. Fishermen were taught to return crabs with
carapace less than 95 mm to the water as quickly as possible to protect the prerecruits. The snow
crabs were classified into two size classes, with type 1 being males with 78 mm < carapace width
< 95 mm (sublegal size) and type 2 being males >95 mm (legal size). The sampling effort was
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Table 4
Comparison of distribution of Ny estimated Jrom index-removal, change-in-ratio,
removal, and combined methods for the case of a small population

Ryj/X1; Ry;/ Xa; All IR CIR R IR/CIR IR/R CIR/R
0.1 0.2 182 13 5 7 15 14 11
46° 34 14 18 37 36 28
80° 64 29 35 67 68 57
0.4 39 25 18 7 15 25 32
82 56 42 18 37 59 71
97 88 77 35 67 89 95
0.6 61 33 34 6 47 33 54
97 71 72 16 88 72 94
100 95 93 41 99 95 100
0.8 76 43 50 15 64 52 66
99 81 90 30 96 87 98
100 98 100 55 100 98 100
0.3 0.4 59 44 10 38 44 56 41
96 84 29 80 85 95 87
100 98 42 94 99 100 99
0.6 73 48 23 43 53 64 63
99 93 61 84 95 95 97
100 100 87 96 100 99 100
0.8 90 68 48 55 74 81 76
99 97 86 90 98 99 99
100 100 98 97 100 100 100

& Percentage of estimates within 10% of true value.
b Percentage of estimates within 25% of true value.
¢ Percentage of estimates within 50% of true value.

measured as the number of locations selected in the survey. Thus, we define f; = fo = 55. Here, we
only consider data for small-mesh traps. During the preseason sampling period, 7943 crabs were
caught, of which 5519 were sublegal size and 2424 were legal-size crabs. In the postseason survey
sample, 4846 crabs were classified as sublegal size and 1819 crabs were legal size. In 1992, the
fishery in St. Mary’s Bay occurred from September 1 to September 10, and it was determined that
58,425 sublegal crabs and 578,425 legal-size crabs were removed from the population. These data
can be used to compute CIR, IR, and combined estimates. We also illustrate how the combined
method can be implemented in a case of two surveys with two removals between the surveys. The
removals for the first half and the second half of the season were not recorded. Purely for purposes
of illustration of our general method, we divided the removal period into two periods with equal
fishing efforts and made a guess at the fraction of the total removal occurring in each period. The
data including the hypothetical removals can be summarized in the following:

Fishery
31 t2
r11 = 519 Ry = 29,982 Ri12 = 28,443 T12 = 4846
T = 2424 R2; = 305,330 Ra2 = 273,095 T2 = 1819
ny = 7943 ny = 6665
f1=55 fi=1 f2=1 f2 =55

Dawe et al. (1993) noted that the catchability of sublegal crabs is probably less than that of
legal-size crabs. If we assume the ratio of the sampling probability for legal-size crabs to that of
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‘ Table 5
Comparison of distribution of N1 estimated from indez-removal, change-in-ratio,
removal, and combined methods for the case of a large population

le/le sz/ij : All IR CIR R IR/CIR IR/R CIR/R
0.01 002 272 21 10 - 14 22 25 19
' 62° 48 19 28 53 54 42
91°¢ 82 39 61 83 83 74
0.04 55 34 22 17 42 37 45
94 74 52 39 82 77 85
100 97 83 69 98 97 99
0.06 it 47 38 21 54 47 69
100 88 77 40 94 89 99
100 99 98 71 100 99 100
0.08 94 58 50 25 70 60 90
100 96 89 38 99 96 100
100 100 100 66 100 100 100
0.03 0.04 64 48 9 44 49 62 47
97 89 16 ' 85 90 96 87
100 99 37 98 99 100 99
0.06 82 59 24 48 61 72 71
100 100 55 90 98 99 99
100 100 85 100 100 100 100
0.08 94 72 38 49 78 80 90
100 99 78 90 99 100 100
100 100 98 99 100 100 100

2 Percentage of estimates within 10% of true value.
b Percentage of estimates within 25% of true value.
¢ Percentage of estimates within 50% of true value.

sublegal crabs (X2) is constant over time, then \; is part of the unknown parameters that need to
be estimated. The minimum sufficient statistics and the unknown parameters associated with each
likelihood function are given in Table 6. The likelihcod functions of the CIR and IR methods (CIR?
and IR! of Table 6) have the problem of lack of identifiability because the number of unknown
parameters is greater than the number of sufficient statistics. If we assume A2 = 1 in Lo (i.e., CIR?
in Table 6), then the MLE under this likelihood function is the traditional CIR estimator, which
gives a biased estimate for total population size, if the assumption of equal catchability fails (i.e.,

S Table. 6
Minimum sufficient statistics and unknown parameters corresponding to each
likelihood function for the snow crab study. See text for meaning of notation.

Likelihood Minimum sufficient statistics Parameters

All z11,%12, 71,2, R11, Ro1, Ri2, Raz X11, X1, 4, A2, ¥, p2
IR! ‘ ny,ng © X1+ Xot, A2
CIR! x11,712 X11,X21, A2

R Ri1, Ra1, Ri12, Ra2 X11, X21, v, p2
IR!/CIR! Z11,T12, N1, N2 X11, Xo1, 8, A2
IR'/R - n1,ng, Ri1, Ro1, Ri2, Ro2 X11, X1, 4y A2, v, p2
CIR!/R -x11, %12y R11, Ro1, R12, Raa X11,X21, A2, v, p2
CIR? x11,%12 X11,X21, M =1
IR(L) T21,%22 Xo1, 1, A2

IR(S) B REY A7) | o Xi1, p
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Table 7
Parameter estimates (x10°%) and their standard errors (x108) obtained under
CIR, indez-removal, removal, and combined methods for the snow crab study

Total Sublegal Legal
All 3.406 (0.0717) 0.535 (0.0403) 2.871 (0.0592)
IR(S, L) — 0.479 (0.0679) 2.318 (0.2160)
CIR? 12.540 (2.8268) 8.716 (2.0102) 3.828 (0.8185)
R 3.475 (0.1035) 0.584 (0.0836) 2.892 (0.0609)
IRl/CIR1 2.797 (0.2263) 0.479 (0.0674) 2.318 (0.2160)
IRl/R 3.475 (0.1020) 0.583 (0.0822) 2.892 (0.0608)
CIRl/R 3.504 (0.0749) 0.620 (0.0432) 2.884 (0.0599)

A2 # 1). However, there is an exception; when removals are made from only one class, the estimate
of population for that class is unbiased (Paulik and Robson, 1969). Thus, the MLE under CIR?
should give a nearly unbiased estimate of the legal-size crab population because 91% of the removals
are legal-size crabs. For the index-removal method, the problem of heterogeneity can be avoided
by making separate estimates for each size class. We calculated separate index-removal estimates
for the legal-size and sublegal-size populations. The estimates of initial population of legal- and
sublegal-size snow crabs obtained under the traditional CIR estimator (CIR? in Table 6), index-
removal estimators for legal- and sublegal-size crabs, removal, and combined methods are given in
Table 7. The estimates of the population of legal-size crabs range from 2,318,000 to 3,828,000. The
estimates of the population of sublegal-size crabs range from 479,000 to 620,000, except for the
estimate using the CIR method alone. We believe that the traditional CIR estimate for the sub-
legal size crab population is biased, which accounts for the discrepancy. Comparing the standard
errors of the estimates, we see the gains in efficiency obtained by combining all three methods. This
example illustrates the flexibility of the general probability model presented in this paper.

6. Discussion

The CIR method is sometimes referred to as the survey-removal method. Thus, the survey and
removal processes are two basic elements involved in the CIR framework. The CIR technique uses
part of the observed data by modeling the survey process but treats the removals and total counts
in the survey samples as fixed quantities (or, in other words by conditioning on them). It does
not fully utilize all the data available in the CIR study, which suggests the idea of developing the
combined method presented here. After modeling the survey and removal processes, we deduced
that the catch-effort and removal models in the literature (Seber, 1982) are special cases of the
removal model presented in this paper, and the IR method is a special case of the model developed
in Section 3.1. The general probability model is extremely flexible. It can be applied to any number
of subclasses, surveys, and removal samples. It also allows heterogeneity of capture probability
among subclasses or over time by imposing the constant probability ratio assumption. We showed
in an example that the general probability model can be easily modified to fit a situation with two
surveys with a series of removals between the surveys.

If the proportions removed are small, then unreasonably large estimates are more likely to occur,
which causes a skewed distribution with a long right tail for the removal and index-removal methods.
The long right tail also occurs for the CIR method when the changes in subclass proportions are
small. From the simulation results, the combined method will compensate for the deficiencies of
each individual method. Thus, we suggest a full usage of the observed data to get a more accurate
and precise estimator, provided, of course, that the assumptions can be met.

Catch-effort and removal methods are now widely used in the study of fish and small-mammal
populations. Both these methods assume the catchability coefficient is constant over time and the
same for all animals, but the assumption may easily be violated in practice. The most common
source of the violation is due to heterogeneous capture probabilities of animals. For example, the
catchability may vary with size. This is usually overcome by stratifying the sample according to
size class and estimating each class separately, but this will reduce the precision of the catch-effort
estimator. We suggest a survey sample be obtained before each removal or conducting preseason
and postseason surveys and then applying the combined method to get a better overall estimator.
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RESUME

Trois méthodes peuvent étre utilisées pour estimer 'effectif d’une population lorsque les données
d’enquéte sont collectées juste avant ou apres deux ou plus prélévements d’individus en nombres
connus: la méthode des changements de proportions, la méthode des changements d’indices
d’abondance par prélevement, et la méthode de relation prélevement-effort. Dans cet article nous
introduisons une méthodologie qui combine les trois méthodes. Nous modélisons tout d’abord le
processus d’enquéte comme un processus ponctuel de Poisson et celui de prélevement comme un
processus de mort linéaire, et nous combinons ensuite les deux processus. La vraisemblance pour
des données completes peut étre décomposée en trois facteurs: la fonction de vraisemblance générale
de la méthode des changements d’indices par prélevement, celle de la méthode des changements de
proportions, et celle de la méthode de relation prélevement-effort. Nous calculons les estimations
du maximum de vraisemblance & ’'aide de l'algorithme de recherche de Powell. Des simulations
de Monte-Carlo sont utilisées pour démontrer que les estimations obtenues en combinant les trois
méthodes sont plus précises que celles obtenues en combinant deux quelconques des méthodes, ou
en n'en utilisant qu’une seule. Un exemple basé sur des données concernant le crabe Chionoecetes
opilio est présenté pour illustrer la méthodologie.
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