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Abstract.—Leslie matrices and life tables are demographic models commonly used to evaluate the ability of

specific elasmobranch life history strategies to sustain given levels and patterns of fishing pressure. These

models are generally density independent and provide an instantaneous rate of population growth for a

specified set of life history traits that correspond to a specific population size. Many investigators are using

these models to compute rates of population growth that they claim are estimates of the maximum population

growth rate (r
intrinsic

); they then use these estimates to compute purported estimates of maximum sustainable

fishing mortality. However, neither a Leslie matrix nor a life table can be used to estimate r
intrinsic

without

additional information, except in the special case where a severely depleted population is modeled. Only in a

severely depleted population will competition for resources be at a minimum and both density-dependent

compensation and the rate of population growth be at a maximum (i.e., at r
intrinsic

). The fundamental problem

is to determine the life history parameters that would occur if the population were extremely depleted because

extensive observations on extremely depleted populations are rare. In the absence of such data, r
intrinsic

can

only be estimated from these types of density-independent models by extrapolating observed population

growth rates toward zero population size. We illustrate the problems in, and describe methods for, estimating

r
intrinsic

and present information on two species of elasmobranch: barndoor skate Dipturus laevis and lemon

shark Negaprion brevirostris.

Classic demographic analysis, based on a life table

or Leslie matrix, provides an estimate of the exponen-

tial (or, more properly, geometric) rate of population

growth or decline based on a fixed set of life history

parameters. Alternatively, the model can be thought of

as providing the current (short-term) rate of population

change under current conditions. For the elasmo-

branchs, where many stocks have been severely

depleted, the question is to what extent these

populations can withstand fishing pressure. Recently,

this question has been approached by attempting to use

demographic models to determine the intrinsic or

maximum rate of population increase (r
intrinsic

) and

therefore the maximum sustainable fishing pressure.

However, fundamental errors in the interpretation of

the models are common.

Problems in the use of a basic demographic analysis

for estimating r
intrinsic

arise from the density-indepen-

dent nature of its structure and the use of static life

history parameter inputs. In reality, at least some life

history traits must be pliable and able to respond to

changes in population size. This forms the basic logic

behind density-dependent compensation, which ex-

plains why populations rarely go extinct and cannot

grow beyond the bounds fixed by limiting factors (such

as food resources or space) for extended periods (i.e.,

there is a carrying capacity of the environment).

Throughout most of this paper, we will assume for

simplification of exposition that all compensatory

response occurs in the survival in the first year of life

(S
0
) rather than in maturity, fecundity, or survival after

the first year. This may be particularly justifiable in the

case of viviparous elasmobranchs, as it is unlikely that

litter size or mating frequency could change apprecia-

bly, and S
0

appears to be related to population size in at

least one of the species on which we focus, the lemon

shark Negaprion brevirostris (Gruber et al. 2001).

When evidence exists that compensation occurs in

other parameters, this is easily incorporated into the

models. In our analysis of the lemon shark (see

Application to Elasmobranchs below), for example, we

had evidence to support extending the compensatory

response into the survival of age-1 animals. For

oviparous elasmobranchs with an egg stage duration
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approaching a year, the mechanism for compensation

may be more complex, involving fecundity (eggs/year),

egg survival (S
egg

), and S
0
. We deal with this added

complexity in our analysis of the barndoor skate

Dipturus laevis (see Advances in Methodology and

Application to Elasmobranchs).

Direct evidence for density-dependent relationships

is rarely available. In fact, even estimating the survival

of the youngest animals is extremely difficult regard-

less of population size. Therefore, these models can be

used in reverse, allowing first-year survival (S
0
) to be

calculated assuming a schedule of reproductive output

and survival (excluding S
0
) and a known rate of

population growth (e.g., a 10% rate of increase might

be observed when a stock is released from fishing

pressure or zero growth might be observed or

hypothesized when the population is at equilibrium;

Vaughan and Saila 1976). Hoenig and Gruber (1990)

expanded on this approach by estimating S
0

for a virgin

population of lemon sharks assumed to be at

equilibrium. They assumed that changes in S
0

are the

principal mechanism for density-dependent compensa-

tion, and for a series of increasing values of fishing

mortality, calculated the value of S
0

that would result in

equilibrium. Since it is unlikely that first-year survival

can rise to the level for unfished adults, the value of

fishing mortality that would require the first-year

survival to rise above that of an adult in an unfished

population was interpreted as an upper limit to

sustainable fishing mortality. Similarly, an upper limit

to the intrinsic rate of population growth (r
intrinsic

) is

estimated by removing fishing pressure from this

model. However, there is no guarantee that these upper

limit estimates can be achieved.

A number of studies have followed this upper-limit

approach (Sminkey and Musick 1996; Casey and

Myers 1998; Mollet and Cailliet 2002). However,

Cortés’ (2004) summary of studies using demographic

analysis for elasmobranchs reveals that many investi-

gators either (1) purported to calculate an actual value

for r
intrinsic

(or, equivalently, to calculate maximum

sustainable fishing pressure) rather than an upper

bound or (2) tried to rank species by the amount of

fishing mortality they can withstand. The logic behind

these attempts is generally unclear and is either flawed

or based on unstated and unrealistic assumptions.

In this paper we first review the logic of simple

demographic analysis using the Leslie matrix (the same

logic holds for life tables), show basic relationships,

and discuss what can and cannot be inferred. We then

discuss how additional information can be utilized to

make additional inferences. We derive methods for

estimating r
intrinsic

and apply them to two elasmobranch

species, barndoor skate and lemon shark.

Basics of Population Dynamics and

Demographic Analysis

Demographic analysis simply tracks the change over

time in the number of animals at different ages or

stages given a schedule of age- or stage-specific

reproductive output and mortality (Gotelli 1998;

Caswell 2001). Models can be constructed assuming

continuous or annual reproduction and, in the latter

case, assuming that abundances pertain to the period

just before or just after breeding occurs.

Suppose we have the following information, which

would be required for an age-based demographic

analysis of a viviparous species: age at maturity (a
mat

)

¼ 3 years, longevity (a
max

) ¼ 6 years, survivorship at

each age (S
0
, S

1
, S

2
, . . . , S

5
), and the production of

females per female ( f
1
, f

2
, f

3
, . . . , f

6
), which is a

function of the percentage reproducing in each age-

class, the frequency of births, the sex ratio, and litter

size. We assume that the numbers are tallied before

reproduction takes place (a prebreeding census). We

can then calculate from the number of females at each

age (n
1,t

, n
2,t

, . . . , n
6,t

) the number there will be in the

following year (n
1,tþ1

, n
2,tþ1

, . . . , n
6,tþ1

), where n
ij

is

the number of animals of age i at the start of year j. The

number of age-0 females produced will be

n1;tþ1 ¼ S0

X6

i¼1

ni;t fi: ð1Þ

The number of females at all other ages is given by

niþ1;tþ1 ¼ ni;tSi: ð2Þ

Often, the age-specific fecundities can be modeled, at

least approximately, as the product of the age-specific

proportion of mature adults (P
i
) and a constant

fecundity per mature adult ( f ), such that f
i
¼ P

i
f. This

assumes that the fecundity of mature animals does not

change with age.

These basic relationships are fundamental to any

demographic analysis, including life tables, matrix

analysis, and Euler–Lotka approaches. In a Leslie

matrix analysis, the life history information for our

example is organized in a projection matrix A as

follows:

A ¼

0 0 S0 f3 S0 f4 S0 f5 S0 f6
S1 0 0 0 0 0

0 S2 0 0 0 0

0 0 S3 0 0 0

0 0 0 S4 0 0

0 0 0 0 S5 0

2
6666664

3
7777775
:

For an oviparous species with an egg stage lasting

approximately 1 year, the matrix would have an
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additional row and column to accommodate the egg

stage. The first row of the matrix would have entries

representing the product of fecundity (female eggs/

year) and egg survival. The second row would have S
0

in the first column and zeros elsewhere, and each

subsequent row would have a single survival rate

corresponding to the next age-class.

The number of females at each age at time t is

denoted by

Nt ¼ ½n1;t; n2;t; n3;t; n4;t; n5;t; n6;t�T:

The female population at time t þ 1 is then given by

Ntþ1 ¼ ANt: ð3Þ

The predicted rate of population increase (r
predicted

) is

defined here to be the instantaneous rate of growth of

the population given the parameters used in the

projection matrix and a stable age distribution. It is

directly related to the largest eigenvalue (k) of the

matrix A as r
predicted

¼ log
e
(k) (Vaughan and Saila

1976). In a follow-up study, Vaughan (1977) derived a

computational method to calculate r
predicted

that is often

used in practice.

In this type of demographic model, r
predicted

represents a snapshot of the population growth rate

based on a fixed set of life history parameters and a

given schedule of fishing mortality. In reality,

populations are not governed by a fixed set of life

history parameters but by the dynamic relationship of

these parameters to stock size. The basic logistic model

of population growth has been used extensively in both

fisheries and ecological research and is the simplest to

include density-dependent compensation through a

linear relationship of the per capita population growth

rate to population size. Throughout this paper, the

logistic model will simply serve to illustrate the

importance of including stock size in the design and

interpretation of a demographic model. In reality, the

relationship may be curvilinear (see, for example,

Sibley et al. 2005), but use of a nonlinear model

requires more data, which will often not be available.

The logistic model (and density-dependent models in

general) states that under virgin conditions a population

will reach an equilibrium state around a carrying

capacity (K; Figure 1a). The number of births will

equal the number of deaths and the population growth

rate will equal zero until some force, such as fishing

pressure, reduces the population size. At lower

numbers, more resources are available to each

individual and survival, particularly that of first-year

individuals, increases. If the population is released

from the fishing pressure, a recovery begins at a rate

that is conditional on the population size relative to the

virgin stock size. The logistic model states that the

instantaneous per capita rate of growth will be greatest

in an uncrowded condition. As the population recovers

and resources become increasingly limiting, population

growth slows and eventually approaches zero (i.e.,

births equal deaths). In reality, virgin populations may

not have a zero growth rate at any particular point in

time. However, we stress that the expected or long-

term average growth rate must be zero.

We use the following definitions of instantaneous

population growth rates in this paper:

r
intrinsic

¼ the maximum per capita population

growth rate (this can only occur in the

absence of fishing at the lowest population

size, when density-dependent compensa-

tion is at a maximum); a stable age

distribution is assumed;

r
conditional

¼ the per capita rate of population growth

when there is no fishing mortality, given a

schedule of survival and reproduction

(conditional on population size and the

resulting density-dependent compensa-

tion) and given a stable age distribution.

In a logistic model, r
conditional

¼ r
intrinsic

�(1
� N/K), where N is the total population

size and K is the carrying capacity;

r
predicted

¼ the predicted rate of population growth per

capita when all other parameters are

known (assuming a stable age distribution

and a given population size); r
predicted

equals r
conditional

minus any effects of

fishing mortality, and

r
achieved

¼ the per capita rate of population growth;

no assumption of a stable age distribution

is made.

It is important to note that the rate of population

growth achieved in the field (r
achieved

) is expected to

equal r
predicted

when a stable age distribution is present

in the population (Figure 2).

The principle that population growth rate is linked to

population abundance is critical to the design and

interpretation of any elasmobranch demographic anal-

ysis (Vaughan 1977; Hoenig and Gruber 1990).

Consider a hypothetical elasmobranch population under

three different levels of exploitation: virgin, moderately

fished, and depleted (Figure 1b). Assume that the

fishing history has been stable for long enough that by

time a any density-dependent compensation that could

occur has occurred and the populations are at

equilibrium. The three populations will have realized

different levels of density-dependent compensation to

remain at equilibrium at different population sizes and
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levels of fishing mortality (F). Note that this implies

that the predicted rate of population change is zero in all

cases. Removing the fishing mortality (time b) in each

scenario reveals the potential rate of population increase

(r
achieved

) that can result at the given population size.

(This rate of change will be close to r
conditional

but will

not be exactly equal to r
conditional

because the age

structure will no longer be in equilibrium). The virgin

population can realize no change in fishing mortality

and continues at its carrying capacity in an equilibrium

state (r
achieved

¼ r
conditional

¼ r
predicted

¼ 0). The

moderately fished population has been released from

some level of fishing mortality, and the calculated value

of r
achieved

represents the short-term growth potential of

a population of that size when released from exploita-

tion. In the depleted population, density-dependent

compensation is at its maximum (S
0

is at its maximum

in our example), and once released from fishing

pressure the population will recover at close to its

maximal rate (r
achieved

approaches r
intrinsic

and would

equal r
intrinsic

if an equilibrium stable age structure were

present). Thus, the instantaneous potential population

growth rate (r
achieved

) depends on the size of the

population. This is a property of all population models

with density dependence. According to the logistic

model being used in our example and assuming a stable

age distribution, the population growth rate is related to

the intrinsic rate of increase in the absence of fishing by

FIGURE 1.—Panel (a) shows the population dynamics and density-dependent responses in the per capita rate of population

growth (r
achieved

) to the addition and removal of two levels of constant fishing mortality (F) according to the logistic model of

population growth (max sust F¼maximum sustainable fishing mortality). Panel (b) shows the steady state (time a) and logistic

growth of populations recovering from three levels of exploitation (to the right of time b) and their relationships to model

predictions of exponential growth. The shaded regions indicate where the logistic and exponential models give similar results.
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the linear relationship (Figure 3)

rconditional ¼ rintrinsic � ð1� N=KÞ: ð4Þ

Note that r
conditional

is the per capita instantaneous rate

of population growth; the instantaneous rate of

population increase is

dN

dt
¼ rconditional � N ¼ rintrinsic � ð1� N=KÞ � N; ð5Þ

and the short-term population trajectory is

NtþDt ¼ Nt � erintrinsicð1�Nt=KÞ3 Dt: ð6Þ

When fishing occurs on all ages at an instantaneous

rate F (per year),

rpredicted ¼ rconditional � F ¼ rintrinsic � ð1� N=KÞ � F:

ð7Þ

Using the calculated r
conditional

in each population to

project the population growth forward in time after the

cessation of fishing along with equation (6) (and

FIGURE 2.—Exponential population growth under fishing pressure (r
predicted

), under no fishing pressure (r
conditional

), and at the

maximum rate (r
intrinsic

), all with a stable age distribution, and under fishing pressure without a stable age distribution (r
achieved

).

FIGURE 3.—The instantaneous per capita rate of population growth (r
conditional

) for a stock as a function of stock size under

logistic growth when fishing mortality is zero. When fishing mortality occurs equally at all ages, r
predicted

¼ r
conditional

� F ¼
r

intrinsic
�(1� N/K)� F, where N/K is the ratio of the population size to the virgin population size. The relationships used to derive

equations (8)–(10) for r
intrinsic

based on survey indices are indicated; q is a constant relating the index to actual population size.
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assuming a stable age distribution) further illustrates

the density-independent nature of the Leslie matrix–life

table model (Figure 1b). Exponential growth is

predicted. This is realistic over the short term but

becomes increasingly unrealistic as the stock grows

larger. The value of r
conditional

is dependent on the life

history parameters (S
0

in our example), which, in turn,

are dependent on stock size. The value of r
conditional

and

the predicted exponential growth approximate the

results from the more realistic logistic growth model

only for a specific stock size and thus only for a short

period of time. It is therefore only possible to compute

r
intrinsic

from a demographic analysis if the model

parameters represent conditions in a severely depleted

population or if additional information is available. In

all other cases, all that is known about the calculated

rate of population increase (r
conditional

) is that it falls

somewhere between 0 and r
intrinsic

(Figure 3).

Uses of the Leslie Matrix

The above is not meant to imply that a Leslie matrix

has no value by itself. A demographic analysis can be

used to check the validity of parameter estimates. For

example, Grusha (2005) found that parameter values

from the literature for a viviparous species, the

cownose ray Rhinoptera bonasus, in Chesapeake Bay

seemed reasonable but led to a life table prediction that

the population would crash under no fishing pressure

unless S
0

exceeded 100%. In this case or that in which

S
0

is required to be greater than adult survival, the life

history parameters are suspect and need to be

reevaluated. The situation is more complicated for an

oviparous species, and we discuss this in Advances in

Methodology.

Unfortunately, for most elasmobranchs, the infor-

mation necessary to determine r
intrinsic

through classic

demographic modeling is unavailable. Even in the most

well-studied species, where age at maturity, fecundity,

natural mortality, and even stock size are known,

estimates of S
0
, F, and the rate of population change

(r
achieved

) are rare. These three parameters are closely

linked. In situations where two of the three parameters

are known, the Leslie model can be used to solve for

the remaining one (assuming that all other model

parameters are known). For example, in situations

where F can be assumed to be zero and r
achieved

is

known, the model can be solved for S
0

(as in Vaughan

and Saila 1976; Hoenig and Gruber 1990). Alterna-

tively, if F is assumed to be zero and S
0

is known, the

model can be solved for the current rate of population

change (in this case r
predicted

should equal r
conditional

;

we return to this case when we consider the lemon

shark data in Applications to Elasmobranchs). If F and

S
0

are not known, as in most cases, there are an infinite

number of solutions to the model that will result in

equilibrium (or a specified rate of population growth).

In situations where even less information is

available, matrix models can be used to examine the

effects of individual parameters while holding all the

other parameters constant and accounting for initial

conditions (age composition). This can provide insights

into the dynamics of the population, such as how

various age-specific harvesting strategies affect the

dynamics (Cortés 1995; Heppell et al. 1999; Beer-

kircher et al. 2002), but it does not allow quantitative

predictions if some parameters are unknown and fixed

at arbitrary values.

Pitfalls of Interpreting Demographic Analyses

For many viviparous elasmobranchs, parameter

estimates are available for the proportion mature at

age, fecundity, longevity, and survival in the absence

of fishing mortality for all but the youngest age-

class(es). In only a few cases are estimates of observed

population growth available. For oviparous species,

estimates of fecundity are harder to obtain and

information on egg stage and first-year survival is

scant.

Lacking direct information, many studies have used

empirical relationships to obtain survival rates. These

relationships are of two types: those that provide a

single value (e.g., Pauly 1980; Hoenig 1983; Jensen

1996) and those that provide age-specific values

(Peterson and Wroblewski 1984; Chen and Watanabe

1989) (Table 1). The assumptions behind the use of the

two types of estimates are different and should result in

different interpretations of model results.

Most studies use empirical relationships that provide

a single survival rate that presumably pertains to most

of the lifespan in the absence of fishing. When this

value is used in a demographic analysis, it is assumed

that first-year survival in a severely depleted population

equals that of unfished adults and represents the

maximum possible value, S
0,max

. The calculated rate

of population increase is then often interpreted as

r
intrinsic

on the assumption that all other parameters are

known. Although this can be a useful upper-limit

biological reference point, there is no guarantee that a

stock can exhibit this degree of compensation and

growth and thus no evidence that this represents

r
intrinsic

. The maximum achievable S
0

is likely to be

species specific, lower than the survival rate for an

adult, and a function of size at birth. Assuming that S
0

can reach adult levels will clearly tend to overestimate

r
intrinsic

, but to what degree is unknown. Thus, the rate

of increase calculated by setting S
0

equal to the survival

of unfished adults gives us an upper-bound proxy for
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r
intrinsic

, that is, a quantity related to r
intrinsic

that may

have some use for fisheries management.

In some studies, purported estimates of r
intrinsic

have

been calculated by specifying age-specific survival rates,

including first-year survival, utilizing the empirical

relationships described by Chen and Watanabe (1989)

or Peterson and Wroblewski (1984) (e.g., Simpfendorfer

2000; Beerkircher et al. 2002; Cortés 2002). However,

these empirical relationships were not based on modeling

severely depleted populations but rather describe ‘‘nor-

mal’’ or virginal survival. Therefore, analysis of a Leslie

matrix based on these parameter values should result in a

value of r
conditional

of zero (i.e., the value corresponding

to the average growth of a virgin population). Any

departure from zero represents measurement error, not

the intrinsic rate of population increase. The expectation

in much of the literature is that estimates of population

growth calculated from a demographic analysis with no

fishing mortality will be positive and that the amount of

fishing mortality that results in an equilibrium state

(r
predicted

¼ 0) represents the maximum sustainable

fishing pressure that can occur before a species is at

risk of extinction. This is false.

If we consider the hypothetical populations present-

ed in Figure 1b, the error in this logic is clear. In the

depleted population at time a, r
conditional

is equal to

r
intrinsic

, while in the virgin population r
conditional

is

equal to zero. In our depleted scenario, the F that

results in equilibrium is the maximum sustainable

fishing pressure. In contrast, the removal of a single

fish per year (i.e., any F . 0) in our virgin population

will result in negative population growth under the

Leslie (exponential) model, which does not allow for

compensation. According to the widespread logic, this

means that a virgin population is more susceptible to

fishing pressure than a depleted population of the same

species. This conclusion is obviously false and

highlights the strong relationship between the results

of a simple demographic model and the population size

for which model parameters have been specified.

Ranking Species

A number of studies have suggested that demo-

graphic analyses can be used for comparative purposes,

that is, to rank species according to their ability to

withstand exploitation based on calculated values of

the rate of population increase (Smith et al. 1998;

Walker and Hislop 1998; Frisk et al. 2002; Gallucci et

al. 2006). Therefore, it is worth examining whether a

Leslie matrix or life table can be used to rank species if

we cannot get unbiased estimates of the intrinsic rate of

increase. We consider four proxies for r
intrinsic

found in

the literature that differ in the way S
0

is computed. All

methods are based on the assumption that all other

parameters are known; S
0

is derived by

(1) setting it equal to a constant for all species (Frisk et

al. 2002),

(2) setting it equal to the survival of unexploited

adults,

(3) setting it equal to virgin survival as computed from

the formulae of Chen and Watanabe (1989) or

Peterson and Wroblewski (1984), or

(4) solving for it after setting adult survival equal to

the square of the unexploited survival rate, that is,

exp(�2M) (Smith et al. 1998).

TABLE 1.—Survival rates for barndoor skate as derived from methods commonly used in demographic analysis, with required

parameters in parentheses. Estimates were made an age at maturity (a
mat

) of 6.5 years (Gedamke et al. 2004), von Bertalanffy

growth parameters (k, L
‘

, and t
0
) of 0.14/year, 166.3 cm, and�1.29 year, respectively), an assumed maximum age (a

max
) of 25

years, and a water temperature of 8.58C (Myers et al. 1997). The methods used are as follows: Hoenig (1983), Pauly (1980),

Jensen (1996), Chen and Watanabe (1989), and Petersen and Wroblewski (1984).

Age Hoenig (a
max

)
Pauly

(L
‘
, k, water temperature) Jensen (a

mat
) Jensen (k)

Chen and Watanabe
(age, k, t

0
)

Peterson and Wroblewski
(weight at age)

0 0.846 0.843 0.776 0.811 0.429 0.517
1 0.846 0.843 0.776 0.811 0.600 0.649
2 0.846 0.843 0.776 0.811 0.684 0.714
3 0.846 0.843 0.776 0.811 0.733 0.752
4 0.846 0.843 0.776 0.811 0.765 0.777
5 0.846 0.843 0.776 0.811 0.787 0.795
6 0.846 0.843 0.776 0.811 0.803 0.808
7 0.846 0.843 0.776 0.811 0.844 0.818
8 0.846 0.843 0.776 0.811 0.844 0.826
9 0.846 0.843 0.776 0.811 0.844 0.832

10 0.846 0.843 0.776 0.811 0.844 0.837
11 0.846 0.843 0.776 0.811 0.844 0.841
12 0.846 0.843 0.776 0.811 0.844 0.844
13 0.846 0.843 0.776 0.811 0.844 0.847
14 0.846 0.843 0.776 0.811 0.844 0.850
15 0.846 0.843 0.776 0.811 0.844 0.852
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Species vary in their size at birth and thus

presumably in their first-year survival. However, under

the first approach it is assumed that all of the

populations being considered have the same maximum

first-year survival (Figure 4). That is, although we

know that the species vary in life history traits, this

approach assumes they do not vary at all in the

parameter that is likely to play the greatest role in

determining a species’ scope for compensation and

therefore its intrinsic rate of increase. According to this

model, differences among species in their intrinsic rate

of increase are due to differences in fertility and adult

survival only. We would argue that it is just as

plausible (or more plausible) that the first-year survival

of all species lies half way between virgin S
0

and virgin

adult survival. In fact, the constant-S
0

approach has

important implied assumptions regarding the scope of

density-dependent compensation that are illustrated in

Figure 4. Population A, the winter skate Leucoraja
ocellata, and the barndoor skate are assumed to have

almost no scope for compensation, while first-year

survival in population D and the little skate L. erinacea
can fully compensate in the sense of coming close to

adult values. Species B resembles species D in having

very low survival in virgin populations, but the first-

year survival of D can rise to that of adults whereas the

first-year survival of B can only reach half that of adult

survival. It is not clear that this is a reasonable

assumption. Therefore, this ranking of species’ resil-

iency is conditional on the model of compensation

being correct, which has not been demonstrated.

Many studies compute an upper-bound proxy for

r
intrinsic

by setting first-year survival equal to virgin

adult survival. This has the advantage of inducing a

positive bias, so that upper bounds to the intrinsic rate

of increase (and thus sustainable fishing mortality) can

be obtained. That is, with this procedure we can

conclude that certain levels of fishing mortality are not

sustainable. However, this proxy may or may not be

appropriate for ranking species’ growth potential.

Consider two shark species, the sand tiger Carcharias

taurus and the tiger shark Galeocerdo cuvier. Both

species have large maximum sizes and high longevi-

ties, but the former has two large pups while the latter

has dozens of small pups. The sand tiger pups probably

have high survival under virgin conditions, and it is not

unreasonable to suppose that their survival could rise

the small distance to adult survival. The tiger shark

pups are much smaller and presumably have much

lower survival under virgin conditions. It is less likely

that their survival will approach the survival of adults.

In other words, the potential scope of compensation

may be markedly different even for these two

apparently similar species. Thus, investigators can

disagree over whether the use of this proxy for ranking

species’ population growth potential is reasonable.

Next, consider the estimates that result when first-

year survival is set equal to the Chen and Watanabe

(1989) or the Peterson and Wroblewski (1984)

estimates. All the estimates of population growth rate

should be close to zero, so that all we are getting from

FIGURE 4.—Model for compensation in which all species attain the same maximum value of S
0

(indicated by the dashed line)

regardless of first-year survival in a virgin population (below the dashed line) and adult survival in the absence of fishing (above

the dashed line). Species A–D represent hypothetical populations. For the little skate, winter skate, and barndoor skate, adult

survival is as in Frisk et al. (2002) and first-year survival was calculated according to the method of Peterson and Wroblewski

(1984). Note the differing levels of compensation that are assumed when a constant S
0

is used.
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this procedure is measurement error, which clearly is

not a basis for ranking species.

Finally, consider the procedure of Smith et al.

(1998). These investigators recognized the problems

that result from the density-independent nature of

demographic models and began the process of

developing a methodology and a biological benchmark

that would be comparable across species. The main

assumption in their model is that a population being

fished to produce maximum sustainable yield (MSY)

will be at half the virgin stock size and have adult

mortality of Z¼FþM¼ 2M. They further assume that

any density-dependent compensation occurs in S
juv

(the

survival of juveniles) rather than in S
0
. They then

follow the methodology of Vaughan (1977) and solve

the model for the value of S
juv

that results in

equilibrium under the MSY fishing conditions. Finally,

they remove the fishing mortality from the model and

solve for the resulting instantaneous rate of population

growth, which they term the ‘‘rebound potential’’ or

r
2M

. In this way they attempt to standardize the level of

density-dependent compensation in different species by

deriving an estimate of S
juv

that is directly related to the

life history parameters of the species. The validity of

r
2M

as a proxy for r
intrinsic

has not been established, but

this approach has the potential to be used in

comparative demography among species.

Although the Smith et al. (1998) approach has

avoided some of the main pitfalls of demographic

analysis by accounting for density-dependent compen-

sation through clear logical assumptions, their proce-

dure provides no indication of how far these rebound

potentials are from r
intrinsic

. Thus, managers are still

faced with uncertainty about the maximum sustainable

fishing pressure. To determine this, an actual estimate

of r
intrinsic

is required.

Advances in Methodology

The absence of detailed information about a depleted

population necessitates the use of alternative methods

to estimate r
intrinsic

. There are two aspects to the

problem: (1) determining values of r
conditional

that

correspond to a specific stock size and (2) determining

r
intrinsic

from two or more values of r
conditional

. The tools

required to obtain an actual estimate of r
intrinsic

have

long been in use in both fisheries and ecological

research. Ricker (1975) summarized the early use of

the logistic model for fishery assessment (and estimat-

ing r
intrinsic

) when only limited data are available.

Although he dealt with biomass models, the mathe-

matics are the same if one substitutes numbers for

biomass. We build our results on those presented by

Ricker.

Estimating r
conditional

for a Viviparous Species

For viviparous species, we assume that the schedule

of age-specific natural mortality for all ages above the

first and age-specific fecundity are known for a

particular population. Thus, everything is known

except three parameters: first-year survival, fishing

mortality, and the rate of population change, r
predicted

(or, more likely, r
achieved

). As previously described,

these three parameters are closely linked, and if two of

the three are known the Leslie model or a life table can

be used to solve for the third. For example, suppose the

instantaneous natural mortality rate is estimated to be

0.2/year and the instantaneous fishing mortality rate is

determined from a tagging study to be 0.3/year. Then

all survivals except S
0

can be computed as exp(�0.2�
0.3) ¼ 0.6. Suppose we know that the population is

currently declining by 5% per year (r
achieved

¼
log

e
(0.95)¼�0.051/year) and we assume that r

achieved

is a reasonable estimate of r
predicted

. Then the model

can be solved for S
0

using Vaughan’s (1977) method.

We can analyze a Leslie matrix with the same

fecundities and S
0

but with the other survivals adjusted

to eliminate the fishing; in this case, survival for all

ages except the first is exp(�0.2) ¼ 0.8. This provides

an estimate of r
conditional

. When fishing mortality

applies to all ages, there is a simpler solution:

rpredicted ¼ rconditional � F: ð8Þ

In our example, fishing mortality applies to all ages

except the first (i.e., the young of the year) and thus

equation (8) is a reasonable approximation. Hence,

r
conditional

for our example is �0.051 þ 0.30 ¼ 0.249/

year.

Estimating r
conditional

for an Oviparous Species

In oviparous species with an egg stage lasting 1 year,

the additional life stage adds a level of complexity to

the demographic model. For these species an additional

row and an additional column must be added to the

matrix and another parameter, egg stage survival (S
egg

),

must be included in the model. In most cases there is

considerable uncertainty in the estimates of both S
egg

and fecundity. However, assuming that the proportion

mature at age is known, all that is needed is the product

of fecundity, S
egg

, and S
0

rather than the value of each

individual parameter. That is, doubling one parameter

(e.g., S
0
) and halving another (fecundity or S

egg
) results

in the same rate of population growth. This has an

important implication for the reasonableness of param-

eter values. An S
0

estimate of, say, 200%, does not

imply a poor fit of the model to the data. Rather, it

implies that the apportionment of recruitment (fecun-

dity�S
0
�S

egg
) to individual parameters is in error, and
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this is inconsequential for projecting short-term

changes in the population. On the other hand, if one

constrains the values of S
egg

and S
0

to be no more than

1, one can determine the minimum value for fecundity

required for the population to grow at the observed

rate.

The overall analysis for an oviparous species is

virtually identical to that for a viviparous species, but

instead of solving the model for S
0

as in the Vaughan

(1977) method one solves it for the product of S
egg

, S
0
,

and fecundity. Fishing pressure is then removed from

the model as in the example for viviparous species to

generate an estimate of r
conditional

. We illustrate this

approach in our barndoor skate example (see Applica-

tion to Elasmobranchs).

Estimating r
intrinsic

The second step is to use the estimates of r
conditional

to estimate r
intrinsic

. Here we make use of the linear

relationship between r
conditional

and population size

under the logistic model (equation 4) and utilize

observations on population behavior at two or more

stock sizes. There are two cases to consider. First,

suppose that an estimate of the conditional rate of

population growth (r
conditional

) is available, along with

an estimate of the corresponding population size (N) as

a fraction of the virgin population size (K). Then, by

virtue of the fact that the conditional rate is a linear

function of population size (Figure 3; equation 4) and

the value of r
conditional

is zero when N¼K, we can solve

for the intercept as

rintrinsic ¼
rconditional

1� N

K

¼ Krconditional

K � N
: ð9Þ

This methodology differs from all the current ap-

proaches to demographic analysis of elasmobranchs in

that the results do not simply provide a snapshot of

population growth under a given set of circumstances

but rather define the overall relationship between

population size and the per capita rate of population

growth according to the theory of logistic growth.

In the second case, we have information from

observation of the population at two or more stock

sizes but do not know how those stock sizes relate to

the virgin population level. Instead, we know the

relative size of the population at the various times.

Assume we have survey data that give relative

population size (qN, where q is the catchability

coefficient [a constant relating the index to the

population size N]) at two points in time along with

the corresponding information necessary to calculate

r
conditional

(Figure 3). Since we are assuming that the

relationship between r
conditional

and N is linear and now

know the ratio of the qNs, we can derive the following

equations:

rconditional1 ¼
rintrinsicðqK � qN1Þ

qK
ð10Þ

and

rconditional2 ¼
rintrinsicðqK � cqN1Þ

qK
; ð11Þ

where c is a constant known from the two surveys

(N
2
¼ cN

1
). Although these two equations have three

unknowns (K, r
intrinsic

, and N
1
), a unique solution for

r
intrinsic

results, namely,

rintrinsic ¼
ðrconditional2 � crconditional1Þ

1� c
: ð12Þ

Therefore, to obtain an estimate of r
intrinsic

we can

calculate r
conditional

at two points in time for which the

relative population sizes are known.

Note that if enough values of r
conditional

with the

corresponding (relative) population sizes are known,

one can derive an empirical relationship between the

population growth rate and size and extrapolate back to

zero population size. This avoids having to make the

assumption of a linear relationship. Alternatively, if an

extensive time series of indices of abundance is

available along with the corresponding (schedules of)

fishing mortality, it may be possible to fit a model that

incorporates density dependence directly. This may be

more efficient than the two-stage procedure described

here. Although such data will rarely be available,

exploration of these ideas is exciting (but beyond the

scope of this paper).

Application to Elasmobranchs

To illustrate the points made in this paper, we

consider two species of elasmobranch: the lemon shark

and the barndoor skate. For both species sufficient data

are available to illustrate the methods presented and

generate at least preliminary estimates of r
intrinsic

. Our

intent here is to demonstrate the methodology; a more

detailed analysis is being conducted for both species.

Lemon Shark

The lemon shark is one of only a few elasmobranch

species for which empirical estimates of S
0

are

available. Estimates of S
0

were obtained for differing

stock sizes between 1995 and 1999 through a tagging

and depletion study in Bimini, Bahamas (Gruber et al.

2001; S. H. Gruber, unpublished). The results from this

study suggest that density dependence is occurring in

the lemon shark nursery area, with an apparently

inverse relationship between first-year survival and the
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size of the age-0 population (Figure 5). Since there is

no directed fishery for lemon shark juveniles at Bimini,

we assume that for juveniles F is equal to zero. A

prebreeding, birth-pulse, female-only Leslie matrix

model was constructed with an age at maturity of 12

years and a longevity of 25 years. Lemon sharks are

believed to have biennial parturition with an average of

12 pups, resulting in a fecundity term for the matrix of

3 females per year (Feldheim et al. 2002). Since lemon

sharks have been shown to stay in the nursery lagoon at

Bimini for the first few years of life (Morrissey and

Gruber 1993), second-year survival was set at the mean

of first-year and adult survival.

The model was then solved for the population

growth (r
conditional

) that would occur given each

estimate of first-year survival (note that this implies

setting survival after the second year equal to that

which would occur in the absence of fishing; in this

case we used S ¼ 0.85 based on the Hoenig (1983)

maximum-age formulation). The relationship between

each year’s estimated population size and r
conditional

allows us to extrapolate to a population growth rate as

the population size approaches zero (i.e., r
intrinsic

) of

0.08/year (Figure 5). As a check on the feasibility of

this estimate, the model was solved for the S
0

that

would be required for the population to grow at a rate

of 0.08/year assuming F ¼ 0. Given the life history

parameters used in our model, S
0

would have to be

110% for the population to grow at our estimated value

of r
intrinsic

. Clearly, this is infeasible and not surprising

given an extrapolation from five data points. However,

if we use the lower confidence limit from our

relationship between r
conditional

and population size,

the estimate of r
intrinsic

is 0.03/year, which would

require a first-year survival of 64% (Figure 5).

Assuming that S
0

cannot be greater than adult survival

(85%), we now have an upper bound for r
intrinsic

of

0.06/year and therefore an overall potential range of

r
intrinsic

for the lemon shark of 0.03�0.06/year.

Barndoor Skate

The barndoor skate was reported to be potentially on

the brink of extinction in 1998 (Casey and Myers

1998). As international fishing fleets were heavily

fishing the Northwest Atlantic, National Marine

Fisheries Service (NMFS) survey indices for the

barndoor skate in the Gulf of Maine and southern

New England went from highs of nearly 0.8 fish/tow in

the early 1960s to lows of nearly zero for the 1970s and

1980s. In 1994, three large areas on Georges Bank (off

Massachusetts) were closed to all mobile fishing gear.

Since then, survey indices for the barndoor skate have

been increasing at an annual rate of approximately

43%, providing an observed rate of growth of

log
e
(1.43) ¼ 0.36/year, which we assume is a

reasonable estimate of r
achieved

. An estimate of F ¼
0.05/year was generated by using a modification of the

nonequilibrium form of the Beverton–Holt mean length

FIGURE 5.—The upper solid line shows the relationship between the first-year survival (S
0
) of lemon sharks and the population

size of juveniles at Bimini as determined from a tagging depletion study. Note that one additional data point has been calculated

beyond those presented by Gruber et al. (2001). The lower solid line shows the relationship between r
conditional

and the

corresponding population size (the first-year survival used to calculate each value of r
conditional

is also indicated). The y-intercept

represents the estimated value of r
intrinsic

, and the dotted lines represent the 95% confidence intervals for the regression. Also

shown on the y-axis are the first-year survival rates corresponding to three values of r
conditional

. The shaded area shows the range

of possible values for r
intrinsic

that is consistent with the data and with the maximum value of S
0

not exceeding adult survival.
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mortality estimator (Gedamke and Hoenig 2006),

which incorporates recruitment variability (Gedamke

2006) to estimate a total instantaneous mortality rate

(Z) of 0.23/year. Subtracting the Pauly (1980) estimate

for instantaneous natural mortality (M) of 0.18/year

results in an estimate for F of 0.05/year. We assume

that this fishing mortality pertains to all ages because

barndoor skates are born at a large size of nearly 20 cm

total length. Given an F of 0.05/year, we solved the

Leslie matrix model for the product of fecundity, S
egg

,

and S
0

that would be necessary for the population to be

growing at the observed rate of 0.36/year. Assuming

that S
0

and S
egg

are no more than 1, a minimum value

for fecundity of 23 female eggs per year would be

required for the population to grow at the observed

rate. This is consistent with the fecundity estimates for

similar oviparous species (Musick and Ellis 2005).

Fishing pressure was then removed from the model to

generate an estimate of r
conditional

of 0.41/year (equa-

tion 8).

Although the barndoor skate population is clearly

depleted and our estimated r
conditional

should approxi-

mate r
intrinsic

, we can take our analysis one step further

by considering the relative stock sizes from the NMFS

survey data. In 1994 the index was at approximately

10% of the high recorded at the start of the time series

in 1963. If we treat the 0.8-fish/tow maximum

observed in 1963 as representing the virgin condition

(i.e., r
conditional

¼ 0) and plot it together with our

estimate of r
conditional

at the corresponding survey index

(0.07 fish/tow), we get two points that uniquely define

a straight line. Extrapolating to a stock size of zero

gives an estimate of r
intrinsic

of 0.45/year (Figure 6). If

the index in 1963 represents the situation with some

fishing, then the rightmost point in Figure 6 should be

farther to the right, thus lowering the y-intercept.

Because the barndoor skate population was so low in

1994, the uncertainty in the virgin stock size affects the

estimated value of r
intrinsic

only slightly.

The increase in the barndoor skate population size

observed in the NMFS surveys provides compelling

evidence that the skate population can grow rapidly, in

excess of 40% per year. The corrections for fishing

mortality and population size may be less compelling at

this point but clearly demonstrate that such calculations

are feasible.

Discussion

The use of a Leslie matrix or life table demographic

analysis for an elasmobranch population is generally

challenging because of limited information on popula-

tion trends, fishing mortality, and life history param-

eters. The simplest case is the one in which the intrinsic

rate of increase can be estimated from observations on

a severely depleted population released from fishing

pressure. This was approximately the case for the

barndoor skate. But, in general, estimation of the

intrinsic rate of increase is an involved process that

requires some information on relative stock size. Most

reported estimates of the intrinsic rate of population

increase for elasmobranchs are ill founded because the

analysis does not take population size into consider-

ation.

Studies can take one of three approaches when direct

observation of maximum population growth is not

possible. The first is to determine the life history

parameters, rate of population change, and fishing

mortality that occur in an extremely depleted popula-

tion. In this case, the model can be used to estimate the

rate of population growth that would occur if the

FIGURE 6.—Relationship between population growth rate and the NMFS survey index of population size for the barndoor skate

(solid line). Point a indicates the value of r
achieved

based on the change in the survey index over time, point b indicates the

calculated value of r
conditional

at an abundance of 0.07 fish/tow, and point c indicates the estimated value of r
intrinsic

. The dashed

line indicates the slight reduction in r
intrinsic

that would occur if the virgin population size (0.8 fish/tow) is an underestimate.
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population were released from fishing pressure. For

most species, however, not enough information is

available and one of two alternative approaches must

be taken. A basic demographic analysis only provides

an instantaneous rate of population growth (not r
intrinsic

,

except in special circumstances) for a specific set of life

history parameters associated with a specific fishing

mortality and population size. As we show in this

paper, with additional data it is possible to estimate

r
intrinsic

from the results of basic demographic analyses

by extrapolating the conditional population growth rate

(r
conditional

) to zero population size. When the data are

insufficient for estimating r
intrinsic

, however, the only

recourse is to be content with calculating a proxy for

r
intrinsic

(such as an upper bound) and present it as such.

We believe that the basic requirement for estimating

r
intrinsic

from a Leslie matrix (i.e., modeling a depleted

population) is largely being overlooked and that there

are three different aspects to the problem. First, there is

understandable confusion because the standard texts do

not emphasize the relationships between r
intrinsic

,

r
conditional

, and r
predicted

. For example, one textbook

(Gotelli 1998) defines the symbol r as the intrinsic rate

of increase and then estimates r for a virgin population

and after 50% of the population is removed. We see

these problems translated to the elasmobranch litera-

ture, with such findings as positive values for the

‘‘virginal intrinsic rate of increase’’ (implying that an

unexploited population will increase exponentially

forever; Xiao and Walker 2000).

Second, the perception that an intrinsic rate of

increase can easily be obtained from a Leslie matrix or

life table negates the importance of advancing the field

through development of new techniques. The impor-

tance of collecting additional information is thus

missed. Third, the results from demographic analyses

are being used as the basis for management recom-

mendations that will not be effective in achieving their

stated goals. A demographic model for any species that

uses ‘‘normal’’ age-specific survival rates (e.g., those

based on Chen and Watanabe 1989 or Peterson and

Wroblewski 1984) should result in a population growth

rate of zero and not an estimate of r
intrinsic

. Any other

calculated value results from measurement error or

noise in the data and is thus probably a substantial

underestimate. The resulting conclusion that only

extremely low fishing mortality can be tolerated and

that modest levels of bycatch may lead to stock

collapse and possibly extinction is simply untenable

because the analysis is logically flawed. One may

argue that this procedure is ‘‘conservative’’ in the short

term, but it is not a rational basis for management.

Scientifically, the results are erroneous and their use

may lead to misunderstanding and to scientists’ loss of

credibility.
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