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Abstract.—Tag return models are used to estimate survival and tag recovery rates. With additional
information on tag reporting rates, one can separate the survival rate into its fishing and natural
mortality rate components. One method of estimating the tag reporting rate is to secretly plant
tags in fishers’ catches. However, if the fishery has more than one component, it may not be
possible to plant tags in all components. Nevertheless, it is possible to estimate the reporting rates
of all components in a multiple-component fishery and the fishing and natural mortality rates, if
at least one component has a known reporting rate and the catches are known for each component.
We simulate a variety of tag return experiments in which tags are planted in one component of a
multicomponent fishery. The simulations show that this method is most effective (i.e., provides
good precision of parameter estimates) when a sufficient number of tagged fish are planted into
a fishery component with a high reporting rate and with a high proportion of the total catch. It is
also advantageous to encourage the reporting of tags in the fishery components without planted
tags. We provide a method for testing various model assumptions when it is possible to plant tags
in more than one component.

The estimation of total mortality rates from mul-
tiyear tagging data has a well-developed theory.
As described by Brownie et al. (1985), such es-
timation does not require knowledge of tag re-
porting rates (i.e., the probability that a fisher who
catches a tagged fish will report the tag to the
appropriate authorities), nor does it require that
tag reporting rates be estimated from the data.
However, when information about the tag report-
ing rate is available in a multiyear study, the mor-
tality from ‘‘natural’’ causes and from one or more
fisheries can be estimated separately (Pollock et
al. 1991; Brooks et al. 1998; Hearn et al. 1998;
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Hoenig et al. 1998a, 1998b). Also, in a single year,
the exploitation rate (the fraction of the stock pre-
sent at the start of the year that is harvested during
the year) can be estimated from tagging data if the
tag reporting rate is known.

Two approaches can be used to obtain infor-
mation about tag reporting rates. The first is to
make use of the information about the tag reporting
rate that is implicit in the tagging data (Youngs
1974; Siddeek 1989). This internal information
comes from the contrast between experiments and
is generally quite weak (Hoenig et al. 1998a), but
it can be enhanced through special design of the
tagging study (see Hearn et al. 1998; Frusher and
Hoenig 2001a, 2001b). The second approach is to
conduct auxiliary studies to obtain information
about reporting rates. These may involve con-
ducting a creel- or port-sampling program (Pollock
et al. 1991), releasing special, high-reward tags
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for which the reporting rate can be assumed to be
100% (Henny and Burnham 1976; Nichols et al.
1991; Pollock et al. 2001, 2002b), placing ob-
servers on a portion of the boats (Hearn et al. 1999;
Pollock et al. 2002a), and planting a known num-
ber of tagged fish in the catches and noting the
fraction of tags returned by the fishers.

We focus on the use of planted tags to estimate
the tag reporting rate. Although there are a number
of examples of the use of this approach (shrimp:
Costello and Allen 1968; Campbell et al. 1992;
menhaden: Ruppert et al. 1984; sport fish: Green
et al. 1983; tunas: Hampton 1997), this method
has not been critically reviewed from the per-
spective of the required assumptions and study de-
sign. Specifically, it is frequently the case that only
a portion of the boats can be studied using planted
tags. For example, an investigator may have access
to boats from one country’s fleet but not those from
another country, or the processing procedure for
one fleet may be more conducive to the use of
planted tags than that of another fleet. We develop
a method to estimate the reporting rate for all fish-
ery components provided that (1) the catches are
known (or can be estimated) for each component
and (2) the reporting rate of at least one component
can be estimated by means of planted tags.

The problem of multicomponent fisheries, in
which some components offer no opportunity for
sampling, is very common. Hearn et al. (1999) and
Pollock et al. (2002b) showed that the reporting,
fishing mortality, and natural mortality rates can
be estimated in a multiple-component fishery in
which catch is known by component provided the
reporting rate is 100% in one component. They
treated boats with observers as the component with
all tags reported (which is analogous to the second
requirement in previous paragraph). Thus, the use
of planted tags in this paper shows the generality
of this approach (i.e., it furnishes a case in which
the reporting rate of at least one component can
be estimated).

We begin by describing a planted-tag study in
a general context and the structure of the tagging
data that arises from this design. We then discuss
the required assumptions and present some sim-
ulation results that provide information on exper-
imental design strategies. We show how to deal
with the likely nonrandomness in the tag planting
procedure as well as how to check some model
assumptions when it is possible to plant tags in
more than one fishery component. We conclude
with advice on the design of planted-tag studies.

Structure of a Tagging Study with Some
Planted Tags

As in a Brownie model, fish are tagged with
normal tags (i.e., not planted tags) at the start of
each year i (i 5 1, . . . , I) and recovered during
year j (j 5 i, . . . , J). Suppose that there are K
components to a fishery (for example, different
fleets in a commercial fishery or a fishery with
recreational and commercial components) and, of
all the tagged fish captured in year j, the proportion
captured by component k is djk. The probability
that a tagged fish will be reported in year j from
fishery component k, given that it has been caught
by component k, is ljk. The expected number of
tags reported from component k involving fish that
were tagged in year i and recovered in year j is

j21
N u d l S , ( j . i )Pi j jk jk h h5iE(R ) 5i jk 

N u d l , (i 5 j ) i j jk jk

with

K

d 5 1O jk
k51

In the first set of equations, Ni is the number of
fish that were tagged and released at the start of
year i, Sh is the annual survival rate in year h, uj

is the annual exploitation rate (i.e., the fraction of
the survivors that is caught) in year j, and Sh

j21P h5i

is the fraction of the Ni tagged fish that survive up
to the beginning of year j. The cell probabilities
of returned recaptures for a two-component fishery
are shown in Table 1 for the case where the l and
d parameters are held constant over years.

The table is parameterized in terms of exploi-
tation and survival rates (u and S), but in practice
we usually want to link these parameters. This can
be accomplished by reparameterizing the model in
terms of additive instantaneous rates of fishing and
natural mortality, F and M. Then, survival rates
can be expressed as

S 5 exp(2F 2 M).

The exploitation rate is also a function of the fish-
ing and natural mortality rates, but its nature de-
pends on the timing of the forces of mortality. If
all fishing occurs as a pulse at the start of the year
(i.e., during a short period of time, which is a
Ricker [1975] type 1 fishery), then the exploitation
rate is

u 5 1 2 exp(2F).
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TABLE 1.—Cell probabilities for a multiyear tagging study in which Ni tagged fish are released in year i (i 5 1, 2,
3) and recaptures are obtained from two fishery components over a 4-year period. In fishery component 1, tags arepNi
planted in year i; S 5 the annual survival rate; u 5 the exploitation rate; l 5 the tag reporting rate; and d 5 the fraction
of the tagged fish caught in a year that were caught by fishery component 1. Note that Si 5 exp(2Fi 2 M), where Fi
is the instantaneous rate of fishing mortality in year i and M is the instantaneous rate of natural mortality, which is
specified to be constant over all years. For type 1 (pulse) fisheries (Ricker 1975), the annual exploitation rate in year i
is given by ui 5 1 2 exp(2Fi); for type 2 (continuous) fisheries, it is given by ui 5 (Fi)/(Fi 1 M)(1 2 Si).

Year of
tagging

Number
tagged or
planted

Fishery
component

Probability of tag recovery in year

1 2 3 4

1
1
2
2
3
3

N1

N2

N3

1
2
1
2
1
2

u1l1d
u1l2(1 2 d)

S1u2l1d
S1u2l2(1 2 d)
u2l1d
u2l2(1 2 d)

S1S2u3l1d
S1S2u3l2(1 2 d)
S2u3l1d
S2u3l2(1 2 d)
u3l1d
u3l2(1 2 d)

S1S2S3u4l1d
S1S2S3u4l2(1 2 d)
S2S3u4l1d
S2S3u4l2(1 2 d)
S3u4l1d
S3u4l2(1 2 d)

1
2
3
4

Np
1

Np
2

Np
3

Np
4

1
1
1
1

l1
l1

l1
l1

If the ratio of fishing and natural mortality is con-
stant over the year, which is a Ricker (1975) type
2 fishery, then

F
u 5 [1 2 exp(2F 2 M )].

F 1 M

A formulation allowing for an arbitrary pattern of
fishing over the course of the year is given by
Hoenig et al. (1998a). This can be generalized to
accommodate competing fisheries with different
timing throughout the year (Brooks et al. 1998).

We cannot observe the proportion of the tagged
fish caught by fishery component k (djk), but under
the condition of complete mixing (see Assump-
tions below), we can assume that it is similar to
the fraction of the total catch captured by com-
ponent k, which can be estimated from known
catch and effort statistics or survey data. In our
analyses and simulations we treat djk as a known
constant, but we advise how to incorporate catch
uncertainty into our method.

We propose that in one or more components of
the fishery, tagged fish are planted in catches to
determine the fraction of the fish reported in the
component(s). In some cases, the planting of tags
can be viewed as independent Bernoulli processes.
For example, menhaden have been tagged with
coded wire tags. In the fish processing plants, the
fish are cooked and ground up and the resulting
mush passes by powerful magnets that recover the
wire tags. Thus, fish can be planted with known
tag numbers in the processing stream to measure
the probability of tag recovery. In general, how-
ever, tagged fish cannot be randomly planted in

the catches of all vessels over all years. Rather,
reporting studies involve a two-stage or multistage
process in which certain vessel trips are selected
each year and then tagged fish are randomly plant-
ed in the catch within these trips. If we ignore this
sampling structure and treat the planted tags as
representing random trials from a Bernoulli pro-
cess, we will tend to overestimate the precision of
our estimate of the reporting rate. We will consider
this further in the Results and Discussion sections.
For the purpose of describing the planted-tag study
design, however, we treat the number of the re-
turned planted tags as a binomial random variable
with two parameters: Np, the number of planted
fish, and l, the tag reporting rate. The cell prob-
abilities are shown in Table 1 for the case in which
tags are planted in only fishery component 1.

Each batch or cohort of normally tagged fish
(corresponding to a row in Table 1) is viewed as
a random sample from a multinomial distribution.
As in a Brownie model, the likelihood is thus pro-
portional to the product over all cells of the cell
probability raised to the power corresponding to
the observed number of recaptures in the cell.
(Note that there is an implicit column of cells for
fish never recaptured; this must be included in the
likelihood.)

Estimation can be accomplished as follows: For
the fishery component with planted tags, the value
of l can be estimated from the planted tags; the
value of d is assumed known from the landings of
all of the components. Therefore, the likelihood
for the component with planted tags is equivalent
to the likelihood for an instantaneous-rates for-
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mulation of the Brownie models (as described by
Hoenig et al. 1998a); the only difference is the
inclusion of the d and l factors, which are known
and estimable, respectively. Hence, the values of
the fishing and natural mortality rates can be es-
timated from the data from the fishery component
with the planted tags. For the other fishery com-
ponents, d is known from landings data and esti-
mates of F, M, and u are available from the data
for the component with planted tags. Therefore,
all that remains is to relate the observed number
of recaptures to the expected number by appro-
priate choice of the reporting rate, lk, for fishery
component k. Let the component of the fishery
with the planted tags be denoted as component 1.
Assuming that each planted fish represents an in-
dependent Bernoulli trial, the maximum likelihood
estimate of the tag reporting rate for this fishery
component in year j is

pR j1
l̂ 5 , (1)j1 pN j1

where is the number of tags planted in thepN j 1

catch from component 1 in year j and is thepR j 1

number of tags reported from the plantings. Given
this estimate of the reporting rate, the reporting
rate from any other component in year j can be
estimated by the equation (see Appendix 1)

j j

R RO Oi jk p i jkd R dj1 j1 j1i51 i51l̂ 5 · · 5 · · l̂ , (2)jk j1j jpd N djk j1 jkR RO Oi j1 i j1
i51 i51

where Rijk is the number of tags reported by com-
ponent k during year j from fish that were tagged
in year i. (Essentially, the middle factor in the
right-hand side of the above equation is the ratio
of all recaptures from the two components in year
j.)

Assumptions

All the assumptions required for use of an
instantaneous-rates formulation of the Brownie
models (Hoenig et al. 1998a) are required for the
multiple-component model with planted tags.
These assumptions have been reviewed by Pollock
et al. (2001):

(1) The tagged sample is representative of the
population being studied. This implies that
fish are thoroughly mixed, so that all fishery

components have the same catch rate of
tagged fish per unit of catch (tags/catch).

(2) There is no tag loss from fish.
(3) Survival rates are not affected by tagging.

(Short-term tag loss and tag-induced mortal-
ity can be evaluated by means of holding ex-
periments, e.g., Latour et al. 2001.) With re-
spect to assumptions 2 and 3, it is noted that
there are sometimes differences in the pro-
ficiency of taggers (Hearn et al. 1991) that
are ideally mitigated by strict tagging pro-
tocols.

(4) The fishery component and time of recapture
of each tagged fish is reported correctly, that
is, the recapture is tallied in the correct cell
of the recovery matrix. (Sometimes tags can
be returned several years after the fish are
recaptured.)

(5) The fate of each tagged fish is independent
of the fates of other tagged fish.

(6) All tagged fish within a release cohort have
the same annual survival and recovery rates.

(7) The instantaneous fishing and natural mor-
tality risks are additive. Five additional as-
sumptions are needed for the planted-tag
method with multicomponent fisheries:

(8) The catch data for each component of the
fishery are accurate. (In particular, there is
no underreporting of the catch in some com-
ponents.)

(9) The tags are planted surreptitiously and fish-
ers do not see any tags being planted (oth-
erwise the behavior of fishers might be al-
tered). This almost certainly precludes the
use of planted tags in recreational fisheries
because there would probably be no oppor-
tunity to plant the tags without being seen.
This assumption does not apply if the tags
are detected automatically by machine.

(10) The planted tags are identical to the normal
tags and are placed in such a way as not to
look unusual (otherwise the behavior of fish-
ers might be altered). For example, using
planted tags with sequential numbers would
be problematic.

(11) Planted tags are rare in any individual fisher’s
catch (the occurrence of an unusually high
number of tags might change the behavior of
fishers), and they cover all years.

(12) The tags are planted early enough after fish
are caught that no part of the process for
finding and reporting normal tags is omitted.

Matlock (1981) describes scientists secretly
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planting a tag into a fish in creels. Most fishers
were contacted later and few knew or suspected
that the tags were planted. However, this validation
process would make fishers aware of scientists’
real purpose, so it would not be feasible for mul-
tiyear tagging projects.

Test of Assumptions

If tagged fish are planted in all components of
a fishery and their catches are given, the assump-
tions of the tagging model can be tested. The in-
tuitive argument is as follows: The tags planted in
each fishery component can be used to estimate
that component’s tag reporting rate. For each com-
ponent, the tag recovery rate per fish landed can
then be converted into the rates of tagged fish cap-
tured per fish landed (tags/catch) by dividing by
its estimated reporting rates. For example, if 2
tagged fish are reported per 1,000 fish landed and
the estimated tag reporting rate is 0.5, then we
estimate that 4 (i.e., 2/0.5) tagged fish were caught
per 1,000 landed.

The estimate of tags/catch for component k in
year j is therefore

j

RO i jk pâ Rjk jki51T̂ 5 5 , (3)jk p@1 2l̂ C Njk jk jk

where jk is the tags returned/catch (i.e., not ad-â
justed for the reporting rate) and Cjk is the catch.

Assuming that the normally tagged fish are fully
mixed in the catch, the catches are correctly tab-
ulated, and the tag planting is implemented cor-
rectly in all components, in a particular year j the
estimates of T̂jk should be the same for all K com-
ponents. It is important to note that equation (3),
which is used for the estimation of T̂jk, requires
only data that is entirely collected within com-
ponent k (i.e., independently of other components).
This allows us to examine the T̂jk residuals, as
shown in Appendix 2. If some of the residuals are
large, this casts doubt on the assumptions.

Simulation Studies

We used the SURVIV program (White 1983) to
simulate observations from fisheries with specific
characteristics. In this approach, the user specifies
a formula for the expected values for each cell of
the recovery matrix and the number of planted tags
recovered; the program then generates 1,000 sam-
ples from multinomial distributions with the spec-
ified parameters. We simulated tag recoveries from
a study with 3 years of tagging data and 4 years

of recapture data, assuming a type 2 fishery. The
fishery consisted of two components. Parameters
held constant over all scenarios were as follows:

F1 5 F2 5 F3 5 F4 5 0.3/year;
M 5 0.2/year;
Np (the number of fish with planted tags each

year) 5 50; and
N (the number of normally tagged fish each year)

5 1,000.
The tag reporting rates, l, and the fraction of

the total catch taken by the first component, d, were
held constant over time but varied among scenar-
ios as follows:

Experiment 1.—The values of l2 and d were held
constant at 0.4 and 0.3, respectively; the value of
l1 was varied from 0.1 to 1.0.

Experiment 2.—The values of l1 and l2 were
held constant at 0.8 and 0.4, respectively; the value
of d was varied from 0.1 to 1.0.

Experiment 3.—The value of l2 was held con-
stant at 0.4, and the expected number of tags re-
covered from the first fishery component was held
constant (l1d 5 0.24) as the value of l1 was varied
among scenarios from 0.24 to 1.0.

Experiment 4.—The values of l1 and d were held
constant at 0.8 and 0.3, respectively; the value of
l2 was varied from 0 to 1.0.

For each of the 1,000 samples in every scenario,
we estimated all four fishing mortality rates, the
natural mortality rate, and both tag reporting rates.
We knew a priori that the maximum likelihood
parameter estimates were asymptotically unbiased,
and in all our simulations except one the means
of the estimated parameter values were close to
the actual parameter values. The one case with bias
was due to estimating a parameter close to the
boundary of the parameter space (i.e., estimating
l2 when it was close to 1.0); we discuss this in
Results. Therefore, we focus on the coefficients of
variation (CVs) of the parameter estimates, which
are defined as 100·SD/mean.

Results

For experiment 1, the CVs of all the parameter
estimates are plotted against l1 (Figure 1). Simi-
larly, the CVs from experiments 2, 3, and 4 are
plotted against d, l1, and l2 in Figures 2, 3, and
4, respectively. The CVs of all parameter estimates
decline with increases in the value of l1 (Figure
1), d (Figure 2), l1 and d (Figure 3), and l2 (Figure
4), with one exception: the CV of the estimates of
l2 in experiment 2 first decreases and then in-
creases as d increases (Figure 2).

In the simulation results from experiment 4, a
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FIGURE 1.—Effects on the coefficients of variation of
the parameter estimates that result from varying the tag
reporting rate of fishery component 1 (l1), the compo-
nent with planted tags. Other variables are defined as
follows: M 5 the natural mortality rate per year of fish
in the fishery; F12F4 5 the fishing mortality rates of
fish recaptured in years 124; and l2 5 the tag reporting
rate of fishery component 2.

FIGURE 2.—Effects on the coefficients of variation of
the parameter estimates that result from varying the frac-
tion of the total catch that is taken by fishery component
1 (d).

bias occurred in the estimate of l2 when the actual
value of l2 was close to 1.0. For example, at an
actual value of 1, the mean of the estimates from
the simulation was 0.967, which represents a neg-
ative bias. This came about because the estimate
of l2 (from equation 2) was less than 1.0 in about
one-half of the simulated data sets while it was
equal to 1.0 in the others (a reporting rate greater
than 1.0 was not possible). Thus, the mean esti-
mate was appreciably less than 1.0. This also re-
sulted in a reduction of the coefficients of variation
of the estimates of l2 when l2 was close to 1.0
(Figure 4). In normal fisheries we do not expect
the reporting rates to be close to 1.0, so this does
not appear to be a major problem.

Note that in experiments 1 and 3 the l1 estimates
were not biased when they were set equal to 1.0
(Figures 1, 3). This is because l1 is estimated di-
rectly from the planted tags (equation 1), so that
if l1 5 1.0 the estimate of l1 will always be 1.0.
In summary, the difference between the bias char-
acteristics of the two reporting rate estimates is

due to the fundamental properties of their esti-
mating equations and the data analyzed.

For the case with l1 5 0.8, l2 5 0.4, and d 5
0.3, which was common to all of the experiments,
we ran the simulated experiment with 25 planted
tags per year (i.e., one-half the planted tags). The
CV of l1 increased by 38%, which would be ex-
pected because l1 is directly estimated from the
planted tags (equation 1) and the number of ob-
servations was halved. However, the CVs of F1 to
F4, M, and l2 increased by less than 9% compared
with those derived from the experiment with 50
planted tags per year.

Discussion

Design Considerations Based on the Simulations

The precision of the mortality and tag reporting
rate estimates increased markedly as the reporting
rate of the fishery component with planted tags
(l1) approached 1.0 (Figure 1). Similarly, preci-
sion improved for all parameters except l2 as the
fraction of the total catch taken by component 1
approached 1.0 (Figure 2). An intuitive explana-
tion for these results is that the normal tags re-
turned from the second component provide infor-
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FIGURE 3.—Effects on the coefficients of variation of
the parameter estimates that result from varying d and
l1 while the product dl1 is held constant. A constant
product implies that the number of tags recovered from
component 1 is constant.

FIGURE 4.—Effects on the coefficients of variation of
the parameter estimates that result from varying l2. Note
that the coefficient of variation of l2 at l2 5 0 is 0/0
(i.e., undefined).

mation on the survival rate (or equivalently, the
sum F 1 M) but extremely little information on
tag reporting rate (and thus extremely little infor-
mation on how to apportion the total mortality rate
to its components). By contrast, the tag returns
from the first component provide information on
the sum F 1 M as well as information on how to
apportion the total mortality to its components.
Therefore, the larger the fraction of the normal tags
returned by component 1 (because either l1 or d
or both are high), the better the precision.

It was previously noted that the CV of the es-
timates of l2 in experiment 2 first decreases and
then increases as d increases (Figure 2). This can
be established analytically from equation (2). In-
tuitively, it is because estimation of l2 depends on
there being tag returns for both fishery compo-
nents; the number of normal tags returned by com-
ponent 1 becomes small when d is close to zero,
and the number of normal tags returned by com-
ponent 2 also becomes small when d is close to
1.0.

Our third experiment held the product dl1 con-

stant. This implies that the expected number of
tags recovered from component 1 was held con-
stant. Here, precision varied considerably as d and
l1 varied, even though the product was constant
(Figure 3). This shows that the size of l1 is more
important than that of d in determining the pre-
cision of the estimates. Thus, it is generally better
to plant tags in the components with high reporting
rates. This might appear to go against common
sense, as one might intuitively expect it to be more
effective to secretly check on the bad guys (the
component with the low reporting rate) than the
good guys (the component with the high reporting
rate). By way of illustration, consider a component
with 100% reporting, though this is unknown to
scientists. Planted tags in that component will
readily and efficiently reveal that fact to a high
precision. At the other extreme, consider a com-
ponent with a 0% reporting rate. That fact will be
known without planted tags, but it brings no in-
formation to the estimation of the mortality pa-
rameters.

In experiment 4, we varied the value of l2 while
holding everything else constant. The higher the
tag reporting rate from the fishery component
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without the planted tags, the better was the pre-
cision of the estimates (Figure 4). Even though it
is possible to estimate F, M, and u without con-
sidering the normal tagging data from the com-
ponents with no planted tags (see CVs of param-
eters in Figure 4 when the reporting rate by com-
ponent 2 is 0%), the additional data from these
components will improve the precision of the es-
timates. This is because the data from the com-
ponents without planted tags provide information
about the survival rate, S, or equivalently, about
the sum F 1 M.

The simulation results lead us to the conclusion
that the method described in this article will work
best when (1) the tag reporting rate (l) in the fish-
ery component with the planted tags is close to
1.0; (2) the component with the planted tags com-
prises a large fraction of the total fishery (d is close
to 1.0); and (3) the tag reporting rate in the com-
ponent without the planted tags is close to 1.0
(though this is a secondary consideration).

Mixing Assumption

All fishery components must have the same
catch rate of tagged fish (tags/catch). For example,
the expected catch rate of tagged fish for all fish-
eries might be 2 tagged fish per 10,000 fish caught.
This implies that the tagged fish are randomly dis-
tributed over the population, so that a decision by
the fleet captains of one component to fish in a
particular area has no influence on the catch rate
of tagged fish per landed fish. (Obviously, the
catch of fish per unit effort will be affected.) This
assumption can be met if fish are tagged through-
out the area inhabited by the stock in proportion
to their local abundance. Local abundance can be
judged in terms of local catch per unit effort. For
example, if specimens are obtained with a trawl,
it would be appropriate to tag 20% of the catch
from each tow but not to tag 20 fish from each
tow. Another way to help assure that the assump-
tion is met is to tag fish well before the start of
the fishing season so that tagged fish have a chance
to mix randomly throughout the population
(though even then such factors as schooling be-
havior might impede thorough mixing). Still an-
other way is to assume that mixing occurs after a
delay, in which case the data analysis method
would be adjusted as described in Hoenig et al.
(1998b).

Model Checking Using Residuals

If tagged fish are planted in two or more com-
ponents of a fishery, the tagging model can be

checked for violations of the assumptions. In Ap-
pendix 2, we derive a method to check for the
equality of tags/catch in the various components
that have planted tags. A large discrepancy be-
tween the estimates could be due to several factors.
The first is the failure of tagged fish to mix
throughout the population. This would cause bias
in any model that does not allow for nonmixing,
such as a Brownie model. The second is incorrect
tabulation of catches of the various fishery com-
ponents. For example it may be due to a poor data
collection and processing procedure, deliberate de-
ception by fishers, illegal fishing, or ghost fishing
by lost nets. This would not cause bias in Brownie
models because such models do not use catch data.
However, in the instantaneous-rates models of this
paper or Hearn et al. (1999), an error that affects
one fishing component more than another will lead
to bias in the estimate of d (and hence in the es-
timates of the mortality rates). Catch errors would
also be of concern in the assessment and manage-
ment of the stock (e.g., allocation of quota).

A third factor that would lead to biased esti-
mates is poor implementation of the tag planting
procedure in some of the fishery components. For
example, fishers in one component might return
all tags whenever observers or planters are present
but return few tags at other times. In an extreme
case, all planted tags might be returned when only
50% of the normal tags are returned. For this com-
ponent, the estimated number of recaptured tagged
fish would be underestimated by 50%.

Note that researchers may attempt to plant tags
in several (or all) fishery components and later it
may be found that assumptions 9212, which per-
tain to planted tags, cannot be (or have not been)
complied with for some components. In such a
case the entire study is not ruined, you just need
it to work for one component (if you know the
catches by component). However, then one cannot
check for assumption violations as just described.

Bernoulli Assumption of Planted Tags

The Bernoulli assumption is not likely to be met.
For example, if two tags are planted at the same
place and at about the same time, their probabil-
ities of being found and returned are likely to be
dependent. In the extreme case, in which the tags
are either both returned or both not returned, it is
as if only one tag were planted (i.e., as if only
one-half of the tags were planted). In the Results
section a case was considered in which half the
number of tags was planted, and it was found that
apart from l1 the CVs of the parameters increased
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by no more than 9%. It is clear from Figures 1–4
why this is so. We planted a sufficiently high num-
ber of tags that the CV of l1 is substantially less
than those of the other parameters. Thus, the var-
iance of l1 has only a weak effect on the variances
of the other parameters. This insures that an in-
correct statistical model for l1 will have minimal
effect, or conversely, that a correct model will not
result in parameter variances that are too high for
meaningful population inferences.

As the homogeneity of reporting rates across
boats cannot normally be assured, few tags should
be planted in many catches rather than many tags
in few catches. Also, as a logistical matter, fishers
are less likely to detect the surreptitious planting
of tags if only a very few tags are planted at a
time so that the number of tags encountered does
not rise dramatically. To construct an adequate sta-
tistical model for l1, it is recommended that aux-
iliary information, such as the date, place, vessel,
and personnel, be collected when planting and re-
covering tags.

In reality, planted-tag studies involve a multi-
stage sampling process. That is, within each year
vessel trips are selected within weeks, fishing sets
are selected within trips, and tags are planted with-
in sets. Because there can be enormous variability
in fisher behavior among boats, the actual vari-
ability in tag reporting rate will be greater than
that predicted from the binomial model assumed
in this paper. The user of planted tags should there-
fore plan to plant more tags than the number called
for under the Bernoulli assumption.

Other Discussion Points

In our simulations we planted tags in each year,
but we have assumed that l1 is the same for all
years. In a field study, if tags are planted in all
years, the standard likelihood ratio test will allow
testing for differences in l1 between years.

Use of planted tags is a powerful method but is
difficult to implement in sufficient numbers. The
requirement for secrecy in planting tags is the
greatest obstacle and probably precludes its use in
recreational fisheries. If the tags are automatically
detected by a machine, then secrecy is not re-
quired. Another difficulty in commercial fisheries
is that the catching, handling, and processing of
fish is often a complex multistaged process. Unless
tagged fish are planted in catches before the fish
are first inspected by people, some component of
the reporting process will be ignored. If normal
tags that are found before tags are planted are all
returned, then the overall reporting rate will be

underestimated. If some or all of those tags are
not returned, it is possible for the overall reporting
rate to be overestimated.

Many fisheries are age structured, and this should
be taken into account as described in Hearn et al.
(1999). For our method, this implies that the age of
each planted fish needs to be determined, say by
measuring its length and using an age2length key
or taking scales to allow direct aging.

A major problem with the method we described
lies in the assumptions that the catch information
is accurate, which implies no bias (which we have
previously discussed) and that the statistical uncer-
tainty in estimating the catch (and hence d) is neg-
ligible. The latter is a wider problem that impinges
on stock assessments and the method of estimating
the reporting rate from tags found by scientific ob-
servers (Hearn et al. 1999). Collecting catch infor-
mation often involves a multistage sampling pro-
cess, which needs to be taken into account.

However, if variance information is available on
catches it may be incorporated into our method.
Where l1 5 1.0, we note that the estimate of l2

from equation (2) is identical to that for an ob-
server program (Hearn et al. 1999 [equations 5
and 6]). This means that the technique of express-
ing the likelihood as a product of likelihoods in-
volving reporting rates, catches, and mortalities
also applies to our model (Pollock et al. 2002a).
Pollock et al. (2002a) discuss how to incorporate
catch variances into the procedure for estimating
reporting and mortality rates.

Another connection to the observer approach is
that the agents planting tags could possibly serve
as observers so that the number of tagged fish per
1,000 fish landed (i.e., tags/catch) could be esti-
mated. However, compared with the planted-tag
information, this contribution to increased preci-
sion would probably be trivial. It might, however,
detect serious bias, as might a modest high-reward
program.
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Appendix 1: Derivation of Estimators for the Tag Reporting Rate in a
Two-Component Fishery

Consider a fish population just before fishing
begins. The size of the population is P, and there
are R tagged fish in the population from previous
tagging events; both P and R are unknown param-
eters. Let u1 and u2 be the finite exploitation rates
for the (assumed) two components of the fishery,
and let l1 and l2 be the corresponding tag reporting
rates. The data collected are as follows:

C , C 5 the catches in the two fishery1 2

components

R , R 5 the number of tagged fish reported1 2

in the two components

pN 5 the number of tagged fish planted1

in the first component

pR 5 the number of planted fish reported1

from the first component

Full Likelihood

Under the assumption that the actual catches are
random variables governed by a multinomial dis-
tribution with parameters P, u1, and u2, the like-
lihood of obtaining catches C1 and C2 is multi-
nomial:

P
C C P2C 2C1 2 1 2(u ) (u ) (1 2 u 2 u ) .1 2 1 2[ ]C , C1 2

The number of reported recaptures of previously
tagged fish is also multinomial, with parameters
R, u1l1, and u2l2. Thus, the likelihood is

R
R R R2R 2R1 2 1 2(u l ) (u l ) (1 2 u l 2 u l ) .1 1 2 2 1 1 2 2[ ]R , R1 2

The number of planted tags that are reported is
binomial, with parameters and l1. Thus, thepN 1

likelihood is

pN p p p1 R N 2R1 1 1l (1 2 l ) .1 1p[ ]R1

The likelihood for all of the data is the product of
the above three likelihoods.

Conditional Likelihood

If we condition the likelihood on the total catch,
then the catch for each component is binomial with

parameters C1 1 C2 (known) and u1/(u1 1 u2).
Thus, the likelihood for the two catches given that
the total catch is binomial is

C C1 2C 1 C u u1 2 1 2 .1 2 1 2[ ] u 1 u u 1 uC 1 2 1 21

Similarly, we can condition on the total number
of recaptures. In that case the number of recaptures
from each component is binomial with parameters
R1 1 R2 (known) and u1l1/(u1l1 1 u2l2), so that
the likelihood is

R R1 2R 1 R u l u l1 2 1 1 2 2 .1 2 1 2[ ] u l 1 u l u l 1 u lR 1 1 2 2 1 1 2 21

The likelihood for the planted tag recoveries does
not depend on the other parts of the likelihood and
remains binomial:

pN p p p1 R N 2R1 1 1l (1 2 l ) .1 1p[ ]R1

The moment and maximum likelihood estima-
tors are based on the following equations:

û1E(C z C 1 C ) 5 (C 1 C ) (1.1)1 1 2 1 2 û 1 û1 2

û l̂1 1E(R z R 1 R ) 5 (R 1 R ) (1.2)1 1 2 1 2 û l̂ 1 û l̂1 1 2 2

p pE(R ) 5 N l̂ (1.3)1 1 1

Equation (1.3) implies that

pR1
l̂ 5 .1 pN1

From (1.1)

û C1 15 ,1 2û C2 2

and from (1.2)

û l̂ R1 1 15 .
û l̂ R2 2 2

Therefore, if is greater than 1.0, the likelihoodl̂2

should be maximized subject to the constraint that
# 1.0.l̂2

û R C R1 2 1 2l̂ 5 l̂ 5 l̂ .2 1 11 21 2 1 2û R C R2 1 2 1
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Appendix 2: Model Checking Using Residuals of Fishery Component
Tags/Catch Rates

One approach to the testing problem is to stan-
dardize the estimated tags/catch for each fisheries
component so that it has approximately a standard
normal residual and a standard normal table can
be used to see if the residual is unusual. (For ex-
ample, if the model were valid, a residual larger
than 1.96 in absolute value would occur approx-
imately 1 time in 20; similarly, a residual larger
than 2.57 would occur 1 time in 100.)

From equation (3) in the text, the estimate of the
tags/catch common to all fisheries components is

j

RO i jk pR âjk jki51T̂ 5 5 .jk p@1 2C N l̂jk jk jk

Note that here jk is estimated from equation (1)l̂
rather than equation (2), with k replacing 1. This
is because in this instance component k has planted
tags, whereas in developing equation (2) it was

assumed that component k (k ± 1) had no planted
tags.

Define the standardized residual to be

K
ˆ ˆT 2 T KOjk jm91 @ 2m951

Q̂ 5 ,jk
ˆÏvar (T )̂ jk

where m refers to the mth fishery component and

var (â ) var (l̂ )̂ ̂jk jk2ˆ ˆvar (T ) 5 (T ) 1 , witĥ jk jk 2 21 2(â ) (l̂ )jk jk

var (â ) 5 â (1 2 â )/C and̂ jk jk jk jk

pvar (l̂ ) 5 l̂ (1 2 l̂ )/N .̂ jk jk jk jk

This test can be readily adjusted for the case in
which tags are planted in two or more components
but not all components. However, it cannot be used
to test the assumptions pertaining to components
with no planted tags.


