
Multiyear tagging studies incorporating fishing

effort data

John M. Hoenig, Nicholas J. Barrowman, William S. Hearn, and
Kenneth H. Pollock

Abstract: The Brownie models for multiyear tagging studies can be used to estimate age- and year-specific annual survival

rates and tag recovery rates. The latter are composites of the exploitation rates and rates of tag reporting, tag shedding, and

tag-induced mortality. It is possible to estimate the exploitation rates if the other components of the tag recovery rates can be

quantified. Instantaneous rates of fishing and natural mortality can be estimated if information is available on the seasonal

distribution of fishing effort. The estimated rates are only moderately dependent on the timing of the fishing; consequently,

the relative effort data can be crude. Information on the timing of the catch over the course of the year can be used as a

substitute for the effort data. Fishing mortality can also be assumed to be proportional to fishing effort over years;

consequently, if fishing effort is known then the tag reporting rate, natural mortality rate, and a single catchability coefficient

can be estimated (instead of natural mortality and a series of fishing mortalities). Although it is possible in theory to estimate

both the tag reporting rate and the natural mortality rate with all of these models, in practice it appears necessary to obtain

some additional data relating to tag reporting rate to obtain acceptable results. The additional data can come from a variable

reward tagging study, a creel or port sampling survey, or from tagged animals that are secretly added to the fishers’ catches.

Résumé: Les modèles de Brownie utilisés pour des études de marquage pluriannuelles peuvent servir à évaluer le taux de

survie et le taux de récupération des marques pour des âges et des années donnés. Le taux de récupération des marques est un

composite du taux d’exploitation et des taux de déclaration des marques, de pertes des marques et de la mortalité induite par

les marques. On peut estimer les taux d’exploitation si les autres composantes du taux de récupération des marques peuvent

être mesurées. Les taux instantanés de mortalité par pêche et de mortalité naturelle peuvent être évalués si on possède des

données sur la répartition saisonnière de l’effort de pêche. Les taux estimés n’étant que modérément dépendants de la période

de pêche, les données relatives sur l’effort peuvent donc être grossières. On peut remplacer les données sur l’effort par les

données sur la période de capture au cours de l’année. On peut aussi supposer que la mortalité par pêche est proportionnelle à

l’effort de pêche au cours des années; donc, si l’effort de pêche est connu, on peut alors évaluer le taux de déclaration des

marques, le taux de mortalité naturelle et un coefficient unique de capturabilité (plutôt que la mortalité naturelle et une série de

taux de mortalité par pêche). Tous ces modèles permettent d’évaluer théoriquement le taux de déclaration des marques et le

taux de mortalité naturelle; mais, dans la pratique, il faudrait d’autres données sur le taux de déclaration des marques afin

d’obtenir des résultats acceptables. Ces autres données peuvent provenir d’une étude de marquage avec récompense variable,

d’une enquête sur la pêche sportive ou d’un échantillonnage au port, ou d’animaux marqués qui sont ajoutés à l’insu de

pêcheurs dans leurs prises.

[Traduit par la Rédaction]

Introduction

Brownie et al. (1978, 1985) developed a series of models for
multiyear tagging studies that allow one to estimate age- and
year-specific survival rates and tag recovery rates. The latter
are composite parameters involving tag retention, exploitation,
tag-induced mortality, and tag reporting rates and, therefore,

are uninteresting parameters by themselves. The Brownie
models generalize early work by Seber (1970) and Robson and
Youngs (1971). Although Youngs and Robson (1975) applied
their model to a study of lake trout (Salvelinus namaycush), it
has only been recently that this class of models and its exten-
sions have received much attention in fisheries research
(Jagielo 1991; Larson et al. 1991; Pollock et al. 1991; Dorazio
1992; Schwarz et al. 1993).

Pollock et al. (1991) showed that, when additional informa-
tion on the retention–survival rate and tag reporting rate is
available, one can estimate the exploitation rate from the re-
covery rate parameter. If additional information is available on
the seasonal distribution of fishing intensity, then it is possible
to determine the instantaneous rates of fishing and natural mor-
tality. Pollock et al. (1991, 1994) considered two special cases:
constant fishing effort over the year and effort confined to a
short pulse.

The Brownie models are extremely useful. However, a
valid criticism is that they may not make use of all available
information. For example, they do not take the magnitude of
the fishing effort into consideration, and they do not include a
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functional relationship between survival rate and tag recovery
rate. A second criticism is that the models are parameterized
in terms of finite mortality rates instead of the instantaneous
rates generally used by fisheries biologists. It would be valu-
able to be able to estimate the natural mortality rate. Further-
more, one might wish to impose restrictions on the component
mortality rates, e.g., to specify constant natural mortality.

In this paper we concentrate on ways in which information
on fishing effort may be used in the analysis of tagging data.
We develop two approaches, one of which has a weak depend-
ence on the effort data while the other has a strong dependence.
For the former, the pattern of effort over the course of the year
is used to partition the mortality into its fishing and natural
components. In theory this can be done even if the tag report-
ing rate is unknown and estimated in the analysis. For the
approach with the strong dependence on effort data we assume
that fishing mortality is proportional to fishing effort over all
years instead of just within a given year (i.e., that the catch-
ability coefficient is the same for all years). There are two
cases to consider. If reporting and retention–survival rates are
known, then from two or more years of tag recovery data from
a single release of tagged fish we can estimate natural mortality
rate and the catchability coefficient (instead of estimating
natural mortality and a series of individual annual fishing mor-
tality rates). If reporting and retention–survival rates are not
known, we can estimate the catchability coefficient, natural
mortality rate, and the product of the tag reporting and retention–
survival rates if tagged fish are released in at least 1 year and
recaptures are made for at least 3 years. Alternatively, we can
estimate these parameters from two or more years of recapture
data when fish are tagged for each of 2 years.

The Brownie models

The structure of the Brownie models can be described in terms
of the expected number of recaptures from each tagged cohort
in each year (Table 1). We will assume that all animals tagged
are fully recruited so that survival rate of the tagged animals
does not change as the animals get older. Extension to the case
of age-dependent survival rates is straightforward (Brownie
et al. 1978, 1985). Suppose Ni animals are tagged in year i

(i = 1, 2, ..., I), and of these rij are recovered in year j (j = i,
i + 1, i + 2,..., J). The quantity rij is a realization of the random

variable Rij representing the expected number of recaptures;
the expected value, E[Rij], is modelled as

(1) E[Rij] =















Ni fj ,

Ni ∏
h=i

j−1

Sh fj ,

i = j

j > i

where Sh is the annual survival rate for year h (probability an
animal alive at the start of year h survives to the end of year h),
and fj is the tag recovery rate for year j (probability that a
tagged animal alive at the start of year j is caught during year
j and its tag is recovered). For convenience, let E[Rij] = NiPij.
The recoveries for each cohort are modeled as a multinomial
independent of all other cohorts. The likelihood Λ is thus

(2) Λ α ∏
i=1

I 





∏
j=i

J

Pij
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ij


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i
−Σ

j
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ij

where Pij is as above for j = i, i + 1, i + 2,..., J and

(3) PiJ∗ = 1 − ∑
j=i

J

Pij

PiJ∗ is the probability a tag from cohort i is not recovered (by
the end of year J). Various restrictions and generalizations are
possible such as assuming survival is constant over time.

For three tagged cohorts and 4 years of recaptures (Ta-
ble 1), it is possible to estimate the following parameters with
the basic Brownie model: f1, f2, f3, S1, S2, and the product S3f4.
This can be seen by devising moment estimators from ratios
of cell probabilities. For example,

f2 =
r22

N2

S1 =
N2r12

N1r22

or
N2r13

N1r23

or
N2r14

N1r24

S2 =
N3r23

N2r33

or
N3r24

N2r34

S3 f4
k=

r34

N2

where the caret (ˆ) denotes an estimate. The moment estima-
tion approach is useful for determining what parameters are
estimable, and in certain cases it leads to maximum likelihood
estimators. However, in general we obtain the maximum like-
lihood estimates by maximizing the likelihood function.

Components of the tag recovery rate

In this paper, we assume the tag recovery rate fj can be modeled
as

(4) fj = φujλj

where φ is the probability that an animal survives any initial
tag shedding and initial tag-induced mortality, uj is the exploi-
tation rate (probability that an animal present at the beginning
of year j is harvested during the year) and λj is the tag reporting

No.

tagged

Year

Year 1 2 3 4

Expected recoveries

1 N1 N1f1 N1S1 f2 N1S1S2 f3 N1S1S2S3 f4

2 N2 — N2 f2 N2S2 f3 N2S2S3 f4

3 N3 — — N3 f3 N3S3 f4

Observed recoveries

1 N1 r11 r12 r13 r14

2 N2 — r22 r23 r24

3 N3 — — r33 r34

Note: Symbols are as follows: Sj, survival rate in year j; fj, tag recovery

rate in year j; rij, number of tags recovered in year j from animals tagged in

year i.

Table 1.Expected and observed number of tag recoveries in a

multiyear tagging study (model 1).
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rate in year j (probability that the tag will be reported given that
the animal is harvested in year j). Often, λ will be assumed
constant over time. (Robson (1971) provided a χ2 test for con-
stancy of λ over time on the assumption that natural mortality
is constant from year to year; however, the power of the test is
not known.)

We refer to the product of the initial mortality caused by
tagging and the short-term tag shedding rate as the retention–
survival rate and denote this by φ. The retention–survival rate
can be estimated by holding newly tagged animals in cages or
holding pens. We will also assume that the long-term or
chronic tag shedding rate is minimal. This can be verified by
double tagging experiments (e.g., Hearn et al. 1991; Barrow-
man and Myers 1996).

The tag reporting rate can be estimated by (i) comparing
the rate of return of tags with high-value rewards with the
return rate of standard tags (Henny and Burnham 1976), (ii) es-
timating the number of tagged animals caught by a creel or
port sampling survey and comparing this estimate with the
number of tags voluntarily returned (Conroy 1985; Conroy
et al. 1989; Pollock et al. 1991), and (iii) secretly placing
tagged fish in fish traps or in the unprocessed catch on board
fishing vessels and observing the fraction of tags returned
(Costello and Allen 1968; Green et al. 1983). For complete-
ness, we note that natural mortality and tag reporting rate can
also be estimated effectively if fish are tagged before and after
the fishing season each year (Hearn et al. 1998). However, as
this involves a different type of study design, we do not con-
sider this case further.

Thus, one can estimate the exploitation rate from the tag
recovery rate, f, when external estimates of tag shedding, tag-
induced mortality rate, and reporting rate are available. Pol-
lock et al. (1991) showed that, if there are different tag
reporting rates for different groups of fishers, then cell prob-
abilities must be specified separately for each group. In the
Appendix, we show how to incorporate the different types of
reporting data into the likelihood function.

Alternatively, we show below that it is possible to estimate
the product φλ from the tagging data, but it appears extremely
difficult to achieve meaningful levels of precision without ad-
ditional information on tag reporting rate.

Instantaneous rates formulation

Fishery scientists customarily work with instantaneous rates of
fishing and natural mortality, F and M, respectively. These can
be derived from the exploitation rate and survival rate if the
amount of fishing effort is known as a function of the time of
year and the fishing mortality is assumed to be proportional to
the amount of effort within periods of the year. Robson (1971)
and Brownie (1974) developed a formulation for tagging mod-
els in terms of instantaneous rates, but they never published
their results. Here, we present a more general formulation in
which the seasonal pattern of effort can be of arbitrary form.

In year j, the exploitation rate, uj, is a function of the fishing
and natural mortality rates, which we can denote by uj(Fj,Mj)
to emphasize the functional dependence. Suppose the fraction
of the annual fishing effort in each period k of year j is denoted
by εjk, for k = 1, 2,..., K (with Σk εjk = 1). Let ∆t be the length
of a period of the year expressed as a fraction of the year. Then

(5a) uj = uj(Fj,Mj) = ∑
k=1

K

ajk bjk cjk

where ajk is the fraction of the population surviving to the
beginning of period k (aj1 = 1)

ajk = exp(−Mj(k − 1)∆t − Fj ∑
h=0

k−1

εjh), (εj0 = 0)

bjk is the fraction dying in period k

bjk = 1 – exp(–Mj ∆t – Fj εjk)

and cjk is the fraction of the deaths in period k due to fishing

cjk =
Fj εjk

Fj εjk + Mj∆t

while the annual survival rate is

(5b) Sj = exp(–Mj – Fj).

When fishing effort and hence fishing mortality are con-
stant over the course of a year, eq. 5a reduces to the familiar
relationship (Ricker 1975):

uj(Fj,Mj) =
Fj

Fj + Mj

(1 – exp(–Fj – Mj))

and when fishing occurs instantaneously at the start of the year
K = 1, ∆t = 0, εj1 = 1, and

uj(Fj) = 1 – exp(–Fj).

The expected values of the number of recoveries are given in
Table 2 for the case where fishing occurs at the beginning of
the year (Table 2A), throughout the year with constant inten-
sity (Table 2B), and for the general case (Table 2C). Note that
these expressions will need to be adjusted if the tagging epi-
sodes are not 1 year apart, e.g., if scheduling difficulties result
in intervals between tagging ranging from 10 to 14 months.

Models partitioning exploitation rate using
seasonal effort data

To estimate natural and fishing mortality rates, we substitute
eq. 5a into eq. 4, and eq. 5b and eq. 4 into the likelihood
(eq. 2). The likelihood is maximized with respect to the pa-
rameters to obtain the maximum likelihood estimates. How-
ever, the model is overparameterized if separate fishing and
natural mortalities are specified for every year. Therefore, it is
necessary to specify some restrictions.

To illustrate the approach we consider two models. The first
is the most general model in which F and M are allowed to
vary from year to year. The second is a standard fishery model
in which M is held constant while F varies. Models with vari-
ous alternative restrictions on the fishing and natural mortality
rates are straightforward to implement.

Model with variable F and M
For this model, the fishing and natural mortality rates are al-
lowed to vary from year to year. However, mortality rates can
only be estimated for one less than the number of years of
tagging (i.e., for I – 1 years). The estimable parameters are
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Fj, j = 1, 2,..., I – 1

Mj, j = 1, 2,..., I – 1
fI (or uI)
fI+1 SI

.

.

.
fJ SI SI+1... SJ–1

φλ
Note that, for year I and beyond, it is not possible to break the
exploitation rate u into its component fishing and natural mor-
tality rates; consequently, we drop the notation uj(Fj,Mj) in
favor of uj to emphasize that the parameter is not further inter-
pretable. The likelihood is given by eq. 2 with the Pij defined
by

Pij =



























φλuj (Fj, Mj)

φλuj (Fj, Mj) ∏
h=i

j−1

e−F
h
−M

h

φλuI

φλuI ∏
h=i

j−1

e−F
h
−M

h

φλuj SI...Sj−1

φλuj SI...Sj−1 ∏
h=i

I−1

e−F
h
−M

h

i = j < I

i < j < I

i = j = I

i < j = I

I = i < j

i < I < j

Note that the product φλ is estimable in theory if φλ is
constant over time.

Model with variable F and constantM
Natural mortality rate is usually considered constant over time
and over recruited ages in fisheries assessments. This is largely
due to the difficulty until now of estimating natural mortality.
Although in theory one can obtain year-specific estimates of
natural mortality, it may be useful to estimate a single value to
reduce the mean squared error and for comparative purposes.
In this case, the parameters to be estimated are the constant
mortality rate, M, and the fishing mortality in each recovery
year j, j = 1,..., J. The product φλ can also be estimated if it is
assumed not to vary over time. The likelihood is given by eq. 2
with Pij defined as in Table 2.

In Pollock et al. (1991), the Brownie models were parame-
terized in terms of survival, S, and tag recovery rate, f. Thus,
it was possible to estimate a separate F and M for each year
(up to year I – 1) or to estimate a single value for F and for M
for all years. But, with their framework, it was not possible to
impose arbitrary restrictions such as to let F vary from year to
year while keeping M fixed.

Assuming catchability is constant from
year to year

There is an extensive literature discussing how fishing effort is
related to fishing mortality (see Hutchings and Myers 1994).
When the fishing mortality is strongly related to the fishing
effort, we can use the effort data to determine the relative
amounts of mortality at different times and estimate the pa-
rameter (or parameters) necessary to convert from relative
mortality to absolute mortality rates.

Assume that the fishing mortality, Fjk, in period k of year j
is proportional to the effort Ejk in the period. Then, Fjk = qEjk,
where q is known as the catchability coefficient. q can be
thought of as the fraction of the population caught by one unit
of fishing effort when that fraction is small (say, less than 1%;
Ricker 1975). The expected values of the numbers of recover-
ies can be derived from those given in Table 2 by replacing Fjk

by qEjk (Table 3). Then in eqs. 5a and 5b, Fj is replaced by
qΣk Ejk.

When the product φλ is known, the parameters q and M can
be estimated from 2 years of recoveries from a single tagged
cohort. For example, consider the case of a pulse fishery oc-
curring at the beginning of each year. The expected number of
recaptures in the first year is N1φλ(1 – e−qE

1) and the expected
number in the second year is N1φλ(1 – e−qE

2)e−qE
1
−M (Table 3).

Setting the observed numbers of recaptures in the first 2 years
equal to their expected values provides two equations in two
unknowns, which can be solved simultaneously for M and q.
Estimates of M and q can be obtained in the same way when
the effort has an arbitrary distribution over the course of a year.
If recoveries are obtained for more than 2 years then it is pos-
sible to estimate year-specific natural mortality rates, Mj, or to
estimate more than one catchability coefficient.

If tagging is conducted for 2 years and recoveries are ob-
tained for 2 years, the product φλ is also estimable. Also, φλ
is estimable if tagging is conducted for 1 year and recaptures
are obtained for 3 years. Consider again a pulse fishery occur-
ring at the beginning of each year. We can solve three equa-
tions simultaneously for q, M and the product φλ:

r11 = N1φλ(1 − e−qE
1)

r12 = N1φλ(1 − e−qE
2)e−qE

1
−M

r22 = N2φλ(1 − e−qE
2)

provided E1 ≠ E2. Alternatively, we can solve the system

r11 = N1 φλ(1 − e−qE
1)

r12 = N1 φλ(1 − e−qE
2)e−qE

1
−M

r13 = N1 φλ(1 − e−qE
3)e−qE

1
−qE

2
−2M

provided not all fishing efforts are equal.
As before, the example above is easily generalized to allow

for an arbitrary pattern of fishing effort over the year. The
expressions for exploitation rate and survival rate in Table 3
are replaced with the appropriate modification of eqs. 5a
and 5b in which Fj is replaced by qEj.

It is a straightforward matter to allow q or M or φλ to vary
somewhat from year to year. For example, one might wish to
try a model in which q in recent years is higher than in previous
years or to explore whether q or M might have changed in years

Hoenig et al. 1469

© 1998 NRC Canada

F97-256.CHP
Wed Aug 05 11:30:27 1998

Color profile: Disabled
Composite  Default screen



with unusual environmental conditions. However, one cannot
estimate a separate q and M for each year.

Another generalization is to allow for different types of
effort, e.g., for gillnets and trawls. Then, instead of assuming
Fjk = q Ejk, we have Fjk = q1 Ejk1 + q2 Ejk2 when there are two
types of effort. Here, the additional subscript refers to the type
of effort. If the amount of the effort of the various gear types
tends to vary in the same way over time, then the estimates of
the qs will be highly correlated. In this case, one may need to
supply an external estimate of the relative catchability of the
gear types, e.g., an estimate of q2/q1. Then we would model
the fishing mortality as

Fjk = q1Ejk1 + q1(q2/q1)Ejk2

and we would estimate just q1.

Using catch as a proxy for effort

It often arises that reliable effort data are not available. The
data analyst then has two choices: (i) assume a seasonal pattern
for the effort (generally, either constant over the year or con-
centrated at one point in the year) and check the sensitivity of
the results to the assumption, or (ii) use the seasonal distribu-
tion of the catch as a substitute for the relative amount of effort
at each point in the year. There are two ways that the seasonal
distribution of catch can be determined: the total catch in the

fishery can be estimated by period of the year through a creel
or port sampling survey, or the number of tags recovered in a
year (from all cohorts combined) can be tabulated by period of
the year and used as a measure of the seasonal distribution of
catch. Catch in an interval of time, C, can be modelled as a
function of the effort, E, or fishing mortality, F, and the aver-
age abundance (N

−
) during the interval as follows (see

Ricker 1975):

C = qEN
− = FN

−

Thus, if the total mortality rate during the year is not too high,
the catch in each period of the year will be approximately
proportional to the effort. To use catch as a substitute for effort,
define the fraction of the catch in year j occurring in period k,
ζjk, for k = 1, 2, ..., K, to be

(6) ζjk =
Cjk

∑
h=i

K

Cjh

The values of ζjk are then substituted for εjk in ajk in eq. 5a.
A better approximation to the seasonal effort than eq. 6 can

be obtained by adjusting the observed catches or tag returns
by an approximate survival rate. This can be accomplished
using

(A) Fishing at the beginning of the year.

Expected recoveries in year

Year 1 2 3

1 N1φλ (1 − e−F
1) N1φλ(1 − e−F

2)e−F
1
−M N1φλ(1 − e−F

3)e−F
1
−F

2
−2M

2 — N2φλ(1 − e−F
2) N2φλ(1 − e−F

3)e−F
2
−M

3 — — N3φλ(1 − e−F
3)

(B) Fishing throughout the year.

Expected recoveries in year

Year 1 2 3

1 N1φλF1

F1 + M
(1 − e−F

1
−M)

N1φλF2

F2 + M
(1 − e−F

2
−M)e−F

1
−M

N1φλF3

F3 + M
(1 − e−F

3
−M)e−F

1
−F

2
−2M

2 — N2φλF2

F2 + M
(1 − e−F

2
−M)

N2φλF3

F3 + M
(1 − e−F

3
−M)e−F

2
−M

3 — — N3φλF3

F3 + M
(1 − e−F

3
−M)

(C) General form.

Expected recoveries in year

Year 1 2 3

1 N1φλu1(F1,M) N1φλu2(F2,M)e−F
1
−M N1φλu3(F3,M)e−F

1
−F

2
−2M

2 — N2φλu2(F2,M) N2φλu3(F3,M)e−F
2
−M

3 — — N3φλu3(F3,M)

Note: Symbols are as follows: Nj, number tagged and released in year j; Fj, instantaneous rate of fishing

mortality in year j; M, instantaneous rate of natural mortality; φ, probability of surviving being tagged and retaining

the tag (in the short term); λ, tag reporting rate; uj(Fj, M), exploitation rate in year j as defined by eq. 5a. Note that

uj is a function of Fj and M and depends on the seasonal pattern of fishing.

Table 2.Instantaneous rates formulation for expected number of tag recoveries in a multiyear tagging

study when fishing mortality varies by year and natural mortality is constant over time: (A) all fishing

occurs at the beginning of the year; (B) fishing occurs throughout the year with constant intensity; and

(C) fishing effort follows an arbitrary pattern over the course of the year.
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ζjk* =
Cjk / Sj

(k−1)/K

∑
h=i

K

Cjh / Sj
(h−1)/K

in eq. 5a in place of the εjk ; the estimates of Sj are obtained by
maximizing eq. 2.

Even when nominal effort data are available, it may be
better to use catch as the measure of effective effort. This
might be the case, for example, if catchability varies substan-
tially over the course of a year.

Example: lake trout in Cayuga Lake

Youngs and Robson (1975) presented results from a 10-year
tagging study of lake trout in Cayuga Lake, New York (see
Table 4). Fish were tagged in October with monel jaw tags
(W.D. Youngs, personal communication). We assume the
retention–survival parameter φ is 1.0 because the cool water
temperature in autumn is not likely to stress the fish and be-
cause the jaw tag is durable.

Youngs (1974) assumed the tag reporting rate, λ, was con-
stant over time and estimated it from the Cayuga Lake data to
be 18%. For now, we will assume λ is known to be 0.18.

The timing of the fishery is not given in Youngs’ papers.
We analyzed the first 3 years of data under five assumptions
about the timing to observe how critical it is to determine the
timing. We used 3 years of data instead of 10 because 10 years
of tagging data is uncommon. The assumptions were (i) fish-
ing took place throughout the year with constant intensity;
(ii) all fishing took place at the start of each year; (iii) all fish-
ing took place at the end of the year; (iv) all fishing took place
at the midpoint of the year; and (v) fishing took place through-
out the last 6 months of the year with constant intensity during

this period. Youngs has informed us (personal communica-
tion) that the fishing season extended from April through Sep-
tember. No information is available about the temporal pattern
of effort within the 6-month fishing season. Thus, it appears
that the fifth scenario most closely approximates the actual
fishery.

We fitted two models for each assumption about timing.
The first model had separate fishing mortalities in each of the
3 years and a constant natural mortality rate over the 3-year
period. The second model had constant fishing and natural
mortalities over the 3-year period.

The results are similar for all assumptions about timing of
the fishery. The estimates of fishing mortality for year 1 range
from 0.50⋅year–1 for a fishery at the beginning of the year to
0.59 for a fishery at the end of the year (Table 5). For the
second year, the range of estimates is 0.64–0.74⋅year–1, and for
the third year the range is 0.40–0.45. Thus, under all five

Year

tagged

No.

tagged

Recoveries in year

1 2 3 4 5 6 7 8 9 10

1960 1048 72 44 8 9 4 4 1 1 1 0

1961 844 — 74 30 20 7 4 2 1 0 0

1962 989 — — 54 48 13 23 5 4 2 0

1963 971 — — — 74 24 16 7 3 1 1

1964 863 — — — — 48 40 5 5 2 5

1965 465 — — — — — 31 10 6 3 2

1966 845 — — — — — — 38 30 6 2

1967 360 — — — — — — — 19 6 6

1968 625 — — — — — — — — 13 14

1969 760 — — — — — — — — — 21

Table 4.Tag recovery data for lake trout from Cayuga Lake, New

York (from Youngs and Robson 1975).

(A) Fishing at the beginning of the year.

Expected recoveries in year

Year 1 2 3

1 N1φλ(1 − e−qE
1) N1φλ(1 − e−qE

2)e−qE
1
−M N1φλ(1 − e−qE

3)e−qE
1
−qE

2
−2M

2 — N2φλ(1 − e−qE
2) N2φλ(1 − e−qE

3)e−qE
2
−M

3 — — N3φλ(1 − e−qE
3)

(B) Fishing throughout the year.

Expected recoveries in year

Year 1 2 3

1

N1φλqE1

qE1 + M
(1 − e−qE

1
−M)

N1φλqE2

qE2 + M
(1 − e−qE

2
−M)e−qE

1
−M

N1φλqE3

qE3 + M
(1 − e−qE

3
−M)e−qE

1
−qE

2
−2M

2 — N2φλqE2

qE2 + M
(1 − e−qE

2
−M)

N2φλqE3

qE3 + M
(1 − e−qE

3
−M)e−qE

2
−M

3 — — N3φλqE3

qE3 + M
(1 − e−qE

3
−M)

Note: Symbols are as follows: Nj, number tagged and released in year j; q, catchability coefficient; Ej, fishing

effort in year j; M, instantaneous rate of natural mortality; φ, probabiliity of surviving being tagged and retaining the

tag (in the short term); λ, tag reporting rate.

Table 3.Expected number of tag recoveries in a multiyear tagging study when fishing mortality is

assumed proportional to fishing effort and natural mortality is assumed constant: (A) all fishing occurs

at the beginning of the year and (B) fishing occurs throughout the year with constant intensity.
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assumptions about timing we would come to the same quali-
tative conclusion that the trout population is heavily exploited.
Similarly, the estimates of natural mortality under these mod-
els range from 0.11⋅year–1 for a fishery at the end of the year
to 0.22 for a fishery at the beginning of the year. As previously
noted, the most appropriate assumption about timing of fishing
appears to be that of uniformity over the last 6 months of the
year. The estimates under this assumption (last column) are
close to the estimates for all other assumptions except perhaps
the pulse fishery at the start of the year (second column).

For the more restricted models with fishing mortality con-
stant over time, the estimates of F range from 0.51 to 0.64 and
the estimates of M range from 0.30 to 0.17 (Table 5). Again,
except for the model with all fishing occurring at the start of
the year, the estimates are in close agreement.

Further sensitivity analyses and
simulations

We fitted to the 10-year lake trout data set a model in which
fishing mortality was allowed to vary from year to year, and
natural mortality and tag reporting rate were unknown but con-
stant over time. The retention–survival parameter φ was as-
sumed to be 1.0, and fishing effort was assumed to be
distributed uniformly over the year. Following Youngs (1974)
we assumed that fishing occurred with constant intensity over
the entire year. Our estimate, λ̂ = 0.19, was close to the esti-
mate that Youngs obtained from the same data using an alter-
native, less efficient estimator. We then asked how reliable
(stable) is this estimate. In particular, we wished to determine
if reasonable estimates could be obtained with fewer than
10 years of data. We refitted the model using the first 9 years
of data and also using the last 9 years of data. We then fitted
the model using 8 years of data (i.e., years 1–8, 2–9, and
3–10). Continuing in this fashion, we found that the estimates
are highly unstable (Fig. 1). Even with 9 years of data, the two
estimates were far apart. With less than 9 years of data we
frequently obtained estimates of natural mortality equal to
zero. With 3 years of data the computations failed to converge

twice. Therefore, it appears that the information on tag report-
ing rate in the data is extremely weak and additional kinds of
information are required to obtain reliable estimates of report-
ing rate.

The computer program failed to converge when we at-
tempted to estimate the fishing mortality rates in the first
3 years and the natural mortality rate and tag reporting rate
from 3 years of recapture data from the first three tagged co-
horts. We then investigated the impact on the analysis of hav-
ing data from a study with high-reward tags. (We asssume the
reward is so high that reporting rate for these tags is 100%.)
We simulated the return of high-reward tags for the cases
where 1, 2, 5, or 10% additional tags were released each year
with high rewards. To generate these data, we assumed that
the fishing mortalities and natural mortality in the first 3 years
were equal to the estimates obtained from the full 10-year data
set. We generated 500 sets of simulated tag returns for each
level of additional tags.

In all cases, the computations converged though not neces-
sarily to feasible estimates. When 1% additional tags were
released with high rewards, the estimates of natural mortality
rate were sometimes negative and were extremely variable
(range –0.26 to 0.52) (Fig. 2). With 2% additional tags, report-
ing rate ranged from 0.14 to 0.32, while the estimates of natural
mortality ranged from –0.06 to 0.43 year–1. With 5% additional
tags, the range of the estimates of reporting rate shrank to
0.16–0.27; the range of the natural mortality estimates was
0.02–0.36. With 10% additional tags, the estimates of both
reporting rate and natural mortality were somewhat more pre-
cise (range for reporting rate 0.16–0.25; range for M 0.07–
0.31).

Releasing 2% more tags meant that 21, 17, and 20 tags were
released in the 3 years. If the tags carried a reward of $100,
say, and the exploitation rate was roughly 35%, then the addi-
tional cost in terms of rewards would be about $3000 total over
a 3-year period. Similar calculations for the case where 5%
additional tags were released implies an added cost of rewards
of $7500. Thus, it appears that the high-reward study is effec-
tive, and the cost need not be prohibitive.

Estimate (SE) under fishery timing assumption

Parameter Continuous Start of year End of year Month 7 Last 6 months

Model: year-specific F, constant M

F1 0.55 (0.08) 0.50 (0.08) 0.59 (0.08) 0.56 (0.08) 0.58 (0.08)

F2 0.70 (0.09) 0.64 (0.08) 0.74 (0.11) 0.70 (0.10) 0.72 (0.10)

F3 0.43 (0.08) 0.40 (0.06) 0.45 (0.10) 0.43 (0.08) 0.44 (0.09)

M 0.16 (0.09) 0.22 (0.11) 0.11 (0.06) 0.15 (0.08) 0.13 (0.07)

Corr(F1,M) –0.08 –0.38 0.15 –0.05 0.05

Corr(F2,M) 0.43 0.12 0.59 0.47 0.53

Corr(F3,M) 0.67 0.47 0.75 0.69 0.72

Model: constant F, constant M

F 0.58 (0.06) 0.51 (0.04) 0.64 (0.07) 0.59 (0.06) 0.61 (0.07)

M 0.23 (0.07) 0.30 (0.09) 0.17 (0.05) 0.22 (0.07) 0.19 (0.06)

Corr(F,M) 0.44 0.11 0.56 0.45 0.52

Note: Tag reporting rate λ is assumed to be 18% and retention–survival φ is assumed to be 100%. Models are fitted under five

different assumptions about the timing of the fishery: (1) fishing occurs with constant intensity all year; (2) pulse fishing occurs at

the beginning of the year; (3) pulse fishing occurs at the end of the year; (4) pulse fishing occurs at the start of month 7; and (5) all

fishing is in the last 6 months of the year and fishing intensity is constant during the fishing season. Standard errors are given in

parentheses. Corr is the estimated correlation.

Table 5.Results of fitting tagging models to 3 years of lake trout recapture data.
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Discussion

Weak assumption about effort
We have shown that information on timing of the fishery can
be used to convert estimates of exploitation and survival rates
into estimates of fishing and natural mortality. Fortunately, in

our example it appears that estimates of mortality rates are not
overly sensitive to misspecification of the timing so that even
crude timing information may suffice. Because the effort data
can be crude, it is even possible to use the seasonal distribution
of catch (or tag recaptures) as a proxy for effort data.

The instantaneous rates formulation of the tagging models

Fig. 1. Estimates of tag reporting rate, λ, (upper panel) and instantaneous natural mortality rate, M, (lower panel) for lake trout in Cayuga

Lake. The abscissa gives the number of years of tagging and recovery data used. Abscissa values have been jittered (a small random number

has been added to each value) to improve the readability. There are two ways to divide the 10-year data set into continuous 9-year blocks

(i.e., using years 1–9 or 2–10), three ways to divide the data into 8-year blocks, etc. Note that, even with 9 years of data, the estimates are

highly variable. The computer algorithm failed to converge twice when only 3 years of tagging and recovery data were considered.
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is important, because it allows meaningful restrictions to be
imposed on the parameters such as constant natural mortality
rates, separate natural mortality rates for cold and for normal
years, or fishing mortality proportional to fishing effort. For-
mulating the tagging models in terms of instantaneous rates
also bridges the gap between traditional fishery models and
models of tagging data developed in the wildlife and ecologi-
cal literatures. With further work, it may be possible to gener-
alize Brownie-like tagging models to incorporate an index of
abundance and the catch at age matrix.

It is clear that, in theory, the product φλ can be estimated
from tagging data alone (Brownie 1974; Youngs 1974).

However, it appears that, in practice, it will generally be nec-
essary to obtain additional information on tag reporting rate
from a variable-reward tagging study, planted tags, or a creel
or plant sampling survey (see Appendix). Our estimates of the
lake trout reporting rate were not stable without additional
information and Brownie’s (1974) attempt to apply a version
of the model to mallard duck (Anas platyrhynchos) data was
also unsatisfactory. Fortunately, it appears that even modest
numbers of tag returns with high rewards are enough to stabi-
lize the estimate of λ (assuming φ is known) and thus to stabi-
lize the estimate of M.

It is interesting that the estimates of F and M are only

Fig. 2. Estimates of tag reporting rate (left) and natural mortality rate (right) from a 3-year tagging study (lake trout data 1960–1962) with

addition of simulated returns from an additional 1% (top), 2%, 5%, or 10% (bottom) tags released each year with high rewards. Without the

simulated high-reward tags, the computations failed to converge.
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moderately correlated in the trout example and in our simula-
tions. This suggests that it might be practical to obtain reliable
estimates of natural mortality for many stocks if the study is
designed carefully (see Pollock et al. 1991 for a review of the
necessary assumptions). In particular, it is necessary to tag fish
over the entire geographic range of the stock to ensure that the
tagged population is representative of the target population, to
estimate the tag-shedding and tag-induced mortality rates with
cage studies, and to include a method of estimating tag report-
ing rate in the study.

Youngs (1974) estimated the tag reporting rate, λ, for an-
glers catching lake trout on Cayuga Lake from the full 10-year
data set. He began by fitting his early version of what has come
to be known as a Brownie model and thus estimated the annual
survival rates. He then regressed the instantaneous total mor-
tality rate Zi (Zi = – ln(Si)) against the tag recovery rate parame-
ter fi and took the reciprocal of the slope to be an estimate of
the tag reporting rate. His analysis is not internally consistent,
because he allowed S and f to vary freely from year to year in
the first part of his analysis; however, in the second part of the
analysis he assumed that λ and M were constant, and this
would imply that f is a one-to-one function of S. Even though
his estimator is not fully efficient, his work is notable because
he clearly demonstrated that there is information about the tag
reporting rate in the tagging data and he pointed the way to-
wards parameterizing the tagging models in terms of instanta-
neous rates.

Strong assumption about effort
There is a large literature critical of the assumption that fishing
mortality is directly proportional to fishing effort. Nonetheless,
developing models based on this assumption is attractive be-
cause many fewer parameters need to be estimated. This can
result in substantial improvements in precision even if some
bias is introduced because of model misspecification.When the
recovery matrix is sparse, it may be necessary to invoke the
strong assumption about effort to make sense of the data.

Lucas (1975) developed a model for a single release of
tagged animals that makes use of the strong effort assumption.
He modelled the exact times of recaptures rather than the
number of recaptures per interval of time. He also derived an
approximate expression for the probability that an animal is
not recaptured during the study. A simpler, exact expression
is available, however. The principal difference between Lucas’
and our approach is that Lucas implicitly assumed the tag re-
porting rate was 1.0, whereas we show that reporting rate can
either be estimated from the tagging data, specified explicitly
in the analysis, or estimated from the joint analysis of tagging
and other data. It was apparently previously unrecognized that
reporting rate could be estimated from a single-release tagging
experiment.
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Appendix. Incorporating information on tag reporting rate.

There are three basic ways to obtain information on tag report-
ing rate: (i) planted tags, (ii) variable (high) reward studies,
and (iii) catch (creel or port) sampling surveys. These have
been reviewed by Pollock et al. (1995).

In a planted tag study, tagged animals are placed in the
catch of randomly selected fishers, and the fraction of the tags
returned is taken as an estimate of the reporting rate. If each
decision by a fisher on whether or not to return a tag (any tag)
is made independently of the decisions for other tags then the
number of planted tags reported can be taken to be a binomial
random variable with parameter equal to the reporting rate in
the fishery as a whole. This is closely approximated when the
expected number of tag recoveries by a fisher is small (say,
less than one). However, the procedure is ill defined if fishers
tend not to bother returning a single tag (say, because the re-
ward is small) but send in tags when several have accumulated.

On the assumption that returns of planted tags follow a
binomial distribution, then if x tags are returned out of n
planted, the likelihood for the planted tag data is

(A1) Λp = 


n

x




λx (1 – λ)n–x

where λ is the tag reporting rate. The likelihood (eq. 2) for
regular tags is multiplied by the likelihood (eq. A1) for planted
tags to get the joint likelihood for both types of data.

In a high reward tag study, a number of tagged animals are
released with messages that clearly indicate the tags can be
returned for a high reward. A publicity campaign is conducted
so that the fishing community is aware of these high-reward
tags. The assumption is made that the rewards are sufficiently
high and the publicity campaign is sufficiently extensive that
the tags from 100% of the recaptured animals are reported. The
reporting rate for standard tags can be estimated as the ratio of
the proportion of returns of standard to high-reward tags.

The expected value of the number of returns from the ith

release of high-reward tags captured in year j is exactly the
same as for standard tags (e.g., in Table 2) except that every-
where that λ occurs it is replaced by 1.0. Thus, the likelihood
for the high reward tag data is constructed in exactly the same
way as for the standard-tag data (except for the λ) and the joint
likelihood for both types of data is the product of the two
likelihoods.

When a port sampling or creel survey is conducted, there
are two types of tag returns: those that are solicited directly by
the survey agent from the fishers and those that are voluntarily
returned by fishers who have not encountered a survey agent.
The former are assumed to be surrendered or reported with
probability 1.0, while the latter are reported with probability
λ. If δ is the fraction of the fishery that is surveyed (e.g., δ =
0.10 if 20% of the access points are surveyed on 50% of the
days of the fishing season) then 100δ% of the tags from recap-
tured fish are expected to be recovered from the survey, leav-
ing 100(1 – δ)% of the tags to be voluntarily reported with
probability λ. Thus, we again have two sets of expected values.
For solicited tags, the expected number of returns from year j
(j ≥ i) is

Es(Rij) = Ni fjs ∏
h=i

j−1

Sh = Niujδj ∏
h=i

j−1

Sh

while for tags reported without solicitation the expected value
is

Er(Rij) = Ni fjr ∏
h=i

j−1

Sh = Niuj(1 − δj) ∏
h=i

j−1

Sh

where ΠSh is defined to be 1.0 if j = i. The tags recovered by
solicitation and by voluntary reporting (as well as those never
recovered) together form one multinomial distribution for each
year of tagging.
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